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CONCLUSIONS
‣ fewer extreme variants are consistent with purging due to the homozygous state in males 

‣ accumulation of nonsynonymous mutations on the BTY could be associated with loss of recombination 

‣ variants in transcription regions on BTX have less severe consequences as compared to BTY and autosomes

METHODSMATERIAL

‣ 217 individuals of 7 Danish cattle breeds 

‣ WGS – Illumina HiSeq 2000 

‣ assembly: ARS-UCD1.2_Btau5.0.1Y 

‣ Btau_5.0.1 and ARS-UCD1.2 GFFs

Statistical analysis:  
• variant density on each chromosome 
• InDel length • Ka/Ks ratio • nucleotide divergence  
• Tajima’s D • SIFT score

RESULTS
‣23,655,295 SNPs / 3,758,781 InDels 

‣numbers of SNPs and InDels not uniformly distributed 
across 100kb non-overlapping windows (P < 0.001)  

‣Ka/Ks ratio: BTA = 0.79 BTX = 0.62 BTY = 2.00

Fig. 4: Distribution of variants.

Fig. 1: The annotation of variants in coding 
(CDS) and non-coding (non-CDS) regions. 

Fig. 2: Nucleotide divergence for 
autosomes, the BTX chromosome,  
and the BTY chromosome. 

Fig. 2: Tajima’s D for autosomes, the BTX 
chromosome, and the BTY chromosome. 

mailto:bartosz.czech@upwr.edu.pl


Mulitple sequencealignmentanalysis
master thesis

author: Paulina Dziadkiewicz (MiNI PW), advisor: dr hab. Norbert Dojer (MIMUW)
pedziadkiewicz@gmail.com, dojer@mimuw.edu.pl

Introduction

Constant growth of genomic data leads to
arising of a new research �eld called pan-

genomics. It is focused on delivering methods
for joint multiple sequences processing. In this
work a tool called PangTree is introduced.
The purpose of this tool is to extend currently
used methods � multiple sequence align-

ment, consensus search, multialignment

graph representation into new concept called
A�nity tree. It is designed to be used as a tax-
onomic study or a reference genome for aligned
sequences.

Multialignment as a graph

Graph representation of multiple alignment
is based on partial order alignment graph.[1] The
transformation is executed as follows:

1. Process multialignment column by col-
umn;

2. Merge identical nucleotides into single
nodes;

3. Add directed edges between subsequent
nodes and undirected for aligned nodes.
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The representation is concise and intuitive. It
is suitable to represent both short-length muta-
tions and longer rearrangements, e.g. inversions
or duplications.

Consensus idea

Typically, a consensus is determined by voting
procedure on multialignment columns:

CATCGATGA

GATG-TTGA

CATG-TTG-

↓

CATG-TTGA

However, for multialignment given as a graph,
Lee[1] proposed to �nd consensuses as minimum
set of paths which describe all sequences.
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Using Lee's approach we can build a graph
model of multialignment and �nd a �at divi-
sion of its component sequences into subgroups.
Each of them has a consensus sequence as-
signed.
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A�nity tree

The introduced data structure is called A�nity tree. It serves as an extension of Lee's methods into
hierarchical division of aligned sequences joint with consensus paths generation.
The root node has all input sequences assigned. Each non-leaf node has at least two children nodes
that form a partition of the sequences assigned to their parent into more homogeneous subsets.

Figure 1: An example of a A�nity tree

Each node has the following attributes assigned:

� a subset of input sequences,

� a linear consensus sequence being their com-
mon representation,

� a minComp (minimum compatibility) -
value which re�ects this node's homogene-
ity level.

A�nity tree can be used as a reference genomes source, an evolution model or an assessment of
heterogeneity for given dataset.

Simulated dataset

In order to evaluate the proposed solution a simulated multialignment was prepared using Evolver
and evolverSimControl software. This alignment was based on a phylogenetic tree presented in
Figure 2. It can be easily compared with the obtained A�nity tree which is shown in Figure 3.

Figure 2: Phylogenetic tree for simulated data

The trees have similar forms which means, that the
evolution pattern was correctly discovered by pangtree.
However, the result includes not only the tree but also
a consensus sequence assigned to each node. This is the
main advantage of the A�nity tree over a phylogenetic
tree.

Figure 3: A�nity tree for simulated

data

For further simulations please follow the article[2].

Ebola virus dataset

The proposed approach was also applied to Ebola virus alignment. The multialignment �le was built
using 160 genomes and is available in UCSC Ebola Portal together with associated studies.

The relationships between aligned se-
quences were correctly discovered.

Figure 4: Local compatibilities between

consensus sequences of ebolavirus species

Plots on Figure 4 show compatibili-
ties with the consensus sequence of the
species from the caption. Dark back-
ground indicates coding sequences, re-
spective genes are listed below.
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Figure 5: Ebola � A�nity tree
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The aim was to develop a novel tool for the 
automated detection of cerebral microbleeds 
(CMBs) based on magnetic resonance (MR) 
images. The system is expected to increase the 
sensitivity of CMB detection and to improve the 
accuracy of the diagnosis of the disease.

Objective

Cerebral microbleeds are caused by structural abnormalities of the brain’s
small vessels. CMBs are linked with many neurological diseases; they can
even lead to cognitive impairment, disability or death. They are visible on 
Susceptibility Weighted Imaging (SWI) sequences as round or elliptical areas
with lower signal intensity and diameter up to 10 mm. Their manual 
detection is prone to errors and time-consuming.

Figure 1: Example of brain image slice
with CMB marked by an expert.

Introduction

In the study, MRI images from Taizhou 
People’s Hospital were collected for a 
group of 304 patients and were used to 
train and test the system (Dataset 1). 
MR images from another 70 patients 
(Dataset 2) were used as an external 
independent validation. The process 
scheme is presented in Fig.2.

Figure 3: The pipeline of the CMB detection algorithm.

Pre-processing

Potential CMBs
detection

Filtration

Feature extraction

Classification

Brain extraction and 
standardization

Segmentation
of CMB candidates

Filtration criteria
(shape, centroid, 

mirrored objects) and 
brain

folding mask

Basic statistics, standard 
texture measures and 

the proposed novel
features

Hybrid neural network 
for images and 

calculated features

Figure 2: The process scheme.

Figure 6: Exemplary positive samples. Red - CMBs identified correctly; 
yellow - CMBs lost by the system; blue - exemplary false positives.

Training set Test set

Author Modality
Patients
without
CMBs

Patients
with 

CMBs

No. of 
CMBs

Patients
without
CMBs

Patients
with 

CMBs

No. of 
CMBs

Sensitivity Specificity FPs/patient

Barnes et al. (2011) SWI - 6 120 - 6 6 81.70% 95.90% 107.50

Bian et al. (2013) mIP SWI - 5 116 - 10 304 86.50% - 44.90

Chen, Yu et al. (2015) SWI - 15 62 - 5 55 89.13% - 6.40

Van den Heuvel et al. 
(2016)

SWI+T1 18 23 491 - 10 136 89.00% - 25.90

Dou, Chen et al. 
(2016)

SWI - 270 270 - 50 117 93.16% - 2.74

Ateeq et al. (2018) SWI - 14 104 - 6 63 93.70% - 56.00

Chen et al. (2018)
SWI+echo

scans
- 61 2458 - 12 377 94.70% - 11.60

Liu et al. (2019) SWI+phase - 179 1473 10 31 168 95.80% - 1.60

Suwalska, Wang et al. 
(2020)  - Dataset 1

SWI 213 30 134 52 9 10 90.00% 98.95% 0.54

Suwalska, Wang et al. 
(2020) - Dataset 2

SWI - - - 40 21 118 91.50% 95.20% 1.92

This work was partially financed by SUT BK-277/RAU4/2020. Calculations were
carried out using infrastructure of GeCONiI (POIG.02.03.01-24-099/13).

Results

Materials

Methods

Dataset 1: The network reached a weighted 
accuracy of 94.48% with a sensitivity of 
90.00% and specificity of 98.95%. The number 
of objects incorrectly classified as CMBs was 
32 which gives an average of 0.54 false
positives (FP) per patient. 
Dataset 2: The system was able to detect 108 
from 118 CMBs which resulted in the 
sensitivity of 91.5%. The number of false 
positives was 117 which gives 1.92 FPs per 
patient and the specificity of 95.2%. 

Figure 4: The architecture of the 
proposed Hybrid Neural Network.

Table 1: Comparison with existing solutions (not all details were always available). Our results are marked red.

Conclusions

The use of both SWI images and numeric features allowed for the CMB’s

identification with high sensitivity and specificity without the need for 

additional imaging or complex models. On both test data, the developed system 

outperforms existing methods in terms of the number of false positives (FP) per 

patient. Our research confirms the usefulness of deep learning solutions to the 

problem of CMB detection based only on single MRI modality.Figure 5: Brain folding
mask in 3D and 2D.


