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Feature selection is a crucial problem in many bioinformatics tasks. Usually the considered
variables are cheap to collect and store but in some situations the acquisition of feature values
can be problematic. For example, when predicting the occurrence of the disease we may consider
the results of some diagnostic tests which can be very expensive.

CHEAP
o : . , _ , — Blood pressure, Weight, ...
The existing feature selection methods usually ignore costs associated with the considered

features. The goal of cost- sensitive feature selection is to select a subset of features which allow
to predict the target variable (e.g. occurrence of the diseases) successfully within the assumed
budget.
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Blood tests, Endoscopy, ...

The main purpose of this research is to review filter methods of feature selection based
on information theory and to propose new variants of these methods considering feature costs.

Artificial Dataset Feature Selection Procedure

. Generate original features from normal distribution X;, X,, .., X, ~ N(©,1)

Problem statement

S* = arg max I(Y,5)

. Generate target variable Y based on X;, X;, .., X, with binomial distribution.
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5. Discretize data with uniform method (each bucket range is equal length) for 20
buckets.
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3. Generate noised features X;'=X; + E; where E; ~ N(O, 0y).
4

. Assign cost to each feature c; =1 and c;(4)” =

SOLVE
Iterative greedy algorithm
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Specific form of greedy algorithm

arg max —————=

X, = d
Xk:C(S—I—Xk)<B (Ck)

Approximations of the conditional mutual information

Imim (Y, Xy) = I(Y, Xi)

I(Y, Xi|S) = I(Y, SUXK)—I(Y, §) = | Imirs(Y, XilS) = I(Y, Xi) — BYE x5 I(Xk, X;)

Jerre(Y, Xi|S) = I(Y, Xk) — B x, esl (Xk, X;) — I(Xk, X;|Y)]

Experiments

MIMIC3 Dataset
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MIMIC 1l is one of the most popular medical datasets in the
world. For experiments we use data of 6500 patients.

Types of features:

- basic patient information (Age, gender, ...)
- basic medical tests (HR, Blood pressure, ...)
- advanced medical tests (Blood tests, Urine tests, ...)

BUDGET 50 %

Target variable:

We can choose one of many target variables, each represents
a positive or negative diagnosis of the specific disease. For
experiments on this poster we will focus on hypertension
disease, which almost 4500 patients were diagnosed with.

BUDGET 50%

— budget=3.88
--+- no regard to cost
--«- with regard to costs

— budget=223.40
--+- no regard to cost
--«- Wwith regard to costs

ID Feature Cost ID Feature Cost

Anion Gap Blood STD Not clear urine CNT

BUDGET 90%

— budget=6.98
--+- no regard to cost
--«- with regard to costs
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Anion Gap Blood RNG
Calcium in blood STD
Creatinine AVG
Creatinine MED
Creatinine STD
Phosphate AVG
Phosphate MED
Potassium AVG
Potassium MED
Sodium RNG
Hermatocrit AVG
Hermatocrit MED
Hemoglobin Blood AVG
INR in blood MED
Erythrocyte MED

Erythrocyte volume AVG
Erythrocyte volume MED
Erythrocyte volume STD

Platelets in blood RNG
APTT in blood STD
APTT in blood RNG
Erythrocyte dist MED
Leukocytes MED
Clear urine CNT

Bilirubin in urne NEG

Color of urine OTHER
Leukocyter in Urine

PH of Urnie AVG

PH of Urine MED

Gravity of urine AVG

Gravity of urine RNG
Urobilinogen in urine MEDLeve
Age

Activity tolerance GOOD
Activity tolerance POOR
Body surface at admission
Braden moisture

Braden Nutrition POOR
Braden Sensory Percep NO IMPAIR
Braden Sensory Percep LIMIT
Ectopy Frequency PRESENT
Ectopy type NONE

Eye opening SPONTAN

Eye opening STIMUL

Eye opening NO

Heart Rate AVG

Lung Sound NOT CLEAR

Level of conscious ALERT

— pudget=335.10
--+- no regard to cost
--«- Wwith regard to costs

GitHub Conclusions

For the purposes of this research, | created an open-source library in Python, the * Cost sensitive feature selection methods choose variables much more cost efficient than
library includes: traditional methods.

* Feature selection using information theory.  We experimented with various F functions, but division function is the most natural way of

T e e scaling two completely different numbers (costs and information increase).

e We are currently experimenting with r parameter selection, to obtain the best possible

* Generating artificial data sets.
results. Method is based on maximization of J criterion increases.

* In future we will try to extend our selection method to consider features with shared cost.
For example various blood results can be obtained during one test, for which we pay only
once.

https://github.com/Kaketo/bcselector
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HIERARCHICAL CLUSTERING IN SEARCH FOR THE MOST
RELEVANT VARIABLES IN SMALL-N-LARGE-P DATASETS
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Introduction

Gene expression and genomic datasets from biomedical studies belong to the so-called
small-n-large-p class. Such datasets describe a relatively small number of objects (records),
counted in tens, hundreds and thousands, using a large number of variables (features),
counted in tens, hundreds and thousands of thousands. Many machine learning algorithms
suffer performance penalties in such a case. Moreover, human analysis of the studied
phenomenon 1s severely hampered.

Various feature selection algorithms have been proposed to tackle this problem. However,
there might still exist many relevant features. A naive approach of top-N ranking will
usually discard relevant information and still keep sets of variables carrying the exact same
information. Eliminating correlations upfront is of no use because correlation does not map

exactly to information about the decision variable.

Datasets under scrutiny

The presented results have been obtained on datasets from the CAMDA 2017 Neuroblas-
toma Data Integration Challenge. There are 3 datasets in total, all describing the same set
of 145 patients:

e CNV — 39 115 array comparative genomic hybridization (aCGH) copy number variation

(CNV) profiles,
e MA — 43 349 GE profiles analysed with Agilent 44K microarrays,
e G — 60 778 RNA-seq GE profiles at gene level.

Proposed algorithms

We reuse the concept of hierarchical clustering applied in a bottom-up fashion (i.e. starting
from one-feature clusters) but modify its linkage properties. The most common linkage
— single (also known as minimum linkage) does not suit the problem well because of its
tendency to merge early. There is also no clear notion of the cluster representative in the
basic hierarchical clustering. Average linkage does not apply either because it is not known
what an average feature would mean. Hence, we propose representative-based linkage with
3 ways to establish the representative:

¢ HCN — hierarchical clustering with native (natural) ordering — using the ordering from
all tuples of potentially relevant variables,

e HCO — hierarchical clustering with original ordering — using the ordering from initial
MDFS-2D output,

e HCS — hierarchical clustering with subset ordering — using the ordering from MDFS-2D
applied only on potentially relevant variables.

Our proposal

We propose an approach to limit the number of variables further by clustering variables
using an existing measure of relevant variable discovery and scoring — the MultiDimen-
sional Feature Selection (MDFS). We searched for clusters of variables having relatively
negligible information gain between themselves. Each cluster is then replaced by the clus-
ter representative variable. There are, however, several ways to build such clusters, even
when constrained to hierarchical methods. There are also different ways to choose the
representative.

Methodology

The basis for our research is the information gain (IG) metric as obtainable from MDFS. In
particular, the interesting one is the two-dimensional MDFES variant, also called MDFES-2D.
Such a metric can be computed two-way, once to obtain the potential relevant variables
list (along with their tentative ranking). Secondly, to compute all pairwise IG values for
selected features. These both serve as the input to further, clustering algorithms which are
meant to remove redundancy from the selection.

It is unknown uptfront what threshold of IG is relevant for a particular case.
we compute classification score using random forest OOB score from features selected at
integer levels of IG threshold (since they map to integer increases in explainability).

The potentially relevant features are discovered using MDFES-2D with 30 random discreti-
sations and Benjamini-Yekutieli p-value adjustment. The cutoff threshold is set to 0.10.

Hence,

Discussion

The different variants of the algorithm behave differently and may give varying results even
with the same threshold and/or number of clusters.

The subset variant (HCS) performs noticeably worse. This might be due to losing the
information about really relevant variables.

Further research is required, including different datasets, especially artificial ones with a
known structure, and cross-validation.

Furthermore, it can be argued that reapplying clustering algorithms designed for object
clustering may give suboptimal results for feature clustering as they disregard important
properties not present in object relations, e.g. correlations and synergies. For such cases a
more dedicated approach might be needed.
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The very first column (IG) shows the threshold at which the result is obtained. First subcolumn of the following —~ rrrrrerrrmrmmmmmmm s

columns shows the number of clusters (representing features). Second shows the OOB score (the less, the better; the

best score in bold).

All computations have been carried out on the computer clus-
ter of the Computational Centre of University of Bialystok.
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Exploring the microbiome protein structure space using
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Microbiome Immunity Project (MIP) New folds

e Human gut microbiome comprises about 3 million unique bacterial genes Working definition: structures with Non-redundant databases (our choice):
TM-score below some predefined threshold e CATH superfamilies (6119) — done

e Main goal of the MIP [1] is to understand the role played by microbiome bacteria
(usually 0.5) with respect to the known fold

e Exploring them would give us a possibility to treat diseases that originate in our microbiome

space. e PDB90 (~60k) — to be done
In the first stage of the project we want to map all proteins produced by those bacteria. For
this purpose we prepared a dataset consisting of ~300,000 unique newly predicted structures TM-score: » MIP 1.0 vs CATH 4.2
which we call MIP 1.0. We used two methods: Rosetta [2] and DMPFold [3] which utilize 10— 0.5] (0.5 - 0.1]

different approaches to the protein structure prediction problem. different folds same folds 05

2 de novo protein structure [ = e J o 0.61 :“‘"! ‘§
prediction methods osetta | 0 ¥ 55 - &
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Structure space visualization

e Structure models were encoded using pretrained autoencoders

new folds metadata 3D structure space e Number of dimensions was further reduced using UMAP

In the poster we are showing differences between both methods with special emphasis on new e Visualizations show ~9 000 Rosetta and DMPFold models
folds identification and structure space visualization. We also plan to create an open access
database that anyone can use in their own analysis.
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Rosetta vs DMPFold

Rosetta MIP 1.0 vs CATH 4.2
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e Monte Carlo search through space of con-
formations to find minimal energy fold

DMPFold

e Developed in 2018 deep learning based pro-
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gles and hydrogen bonds prediction
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Introduction

* The human gut microbiome contributes to the development and persistence

of diseases such as type-1 diabetes (T1D),

many others.

ulcerative colitis, obesity and

 Exact mechanisms of how gut microbiota influences health remains poorly

understood.

* Only 50% of microbial protein-coding genes may be functionally annotated.

* Low functional annotation coverage poses a major challenge in
understanding of how the microbiome contributes to certain disease

phenotypes.

 We aim to characterize the functional potential of the human gut

microbiome in type-1 diabetes.

Methods overview

 Diabimmune infant gut microbiome cohort data previously collected in
Finland, Estonia and Russian Karelia as case study

 Shotgun metagenome sequencing (1067 samples)

A custom metagenomics annotation pipeline based on DeepFRI machine
learning protein function annotation method

* Our method integrates de novo genome reconstruction, taxonomic profiling

and functional annotation

Taxonomy aware function annotation pipeline

Pipeline implemented in WDL

Assembly Binning Taxonomic assignment
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Functional annotation
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Predicted Gene ontology terms
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Annotation method Gene ontology terms predicted

DeepFRI (CNN-MF model)

EggNOG 280,959

13,896,275

Quality and completeness of metagenome assembled genomes
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Genome quality of MAG species

Completeness

Genome quality threshold of >90% genome completeness and <5%
contamination, the final genomes matching these criteria were 2,256

Assembly Count
Contigs 17 M

MAG genes 1.7 M
NR- gene catalogue 1.9 M

Assembly and gene prediction statistics

Abundant species in the Diabimmune datasets
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We observed an increase in annotation coverage with DeepFRI compared

to Humann2 and EggNOG

Conclusions

* Result shows that DeepFRI method increases the annotation coverage
* Next step is to expand the annotations to incorporate 3D structure

DeepFRI predictions
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Abstract

16S rRNA marker gene sequencing is a staple technique for microbiome analyses that provides rapid and cheap
bacterial identification. The most popular and well-standardized experimental technique is based on Illumina short-read
seguencing. Alternative techniques are long-read Oxford Nanopore (ONT) and short-read lonTorrent platform (PGM). While both
producers provide complete 16S analysis workflows, they are often not fully transparent, unadaptable, and limited to the basic
methodology implemented within a given workflow. This produces a community-wide need for more in-depth workflows which
at the same time will validate the applicability of the two sequencing methods in the area of 16S experiments.

We describe the powers and limitations of the two methods (PCM and ONT) by comparing them with our alternative
downstream analysis created in QIIME2. The workflow was tested on 16S data generated on the Oxford Nanopore’'s and Thermo
Fisher's sequencing machines and their 16S metagenomics Kits. 16S sequencing data from 126 fecal samples from mice
humanized with human stool were analysed. Different diversity metrics, taxonomy classification, and differential abundance
methods were performed. For 21 common samples, Mentel test and Procrustes were made to compare the correlation of beta
diversity between the two platforms.

We have managed to achieve powerful results using the approach we created, despite the limitation of information
imposed by manufacturers' policies. Mentel test and Procrustes suggest good correspondence of the results from the two
platforms. However, we would like to stress the further need for the entire community to cross-validate results and develop new
standardized approaches for the data produced from PGM and ONT 16s sequencing solutions.

Introduction
16S rRNA sequencing on lon Torrent and Oxford Nanopore

16S rRNA gene has been universally used for taxonomic studies of prokaryotic species.
Table 1 presents these approaches as proposed by the technology provider [1, 2].

lon Torrent Oxford
ThermoFisher NANOPTQ!EEES
SCIENTIFIC 9
: Long sequence read
Detectloq ot . The magnitude of the lengths; relatively
hydrogen ion Fast; cheap; high- : : : .
SEQENCING : . electric current density | high sequencing error
release during quality reads :
METHOD : : across a nanopore rate; high throughput;
incorporation of new -
: surface portability; fast; low
nucleotides .
price
Hypervariable regions
16S V2-4-8 and V3-6,7-9;
SEQUENCING lon 16S™ forward and reverse 16S Barcoding Kit full IengtehnleGS "RNA
KIT; REGION Metagenomics Kit reads; bidirectional; d
SEQUENCED proprietary primer
sequences
lon 165™ BLAST to either the
metadenomics premium curated BLAST basecalled
9 MicroSEQ® ID or EPI2ZME 16S analysis sequence against
SOFTWARE analyses module :
L curated Greengenes workflow the NCBI 16S bacterial
within the lon
™ or a two-step database,
Reporter™ software :
alignment
Table 1

Powers and challenges of the two methods

The scarcity of tools specifically designed to work with Nanopore, and lon Torrent
sequences make it challenging to carry out a specialized microbiome analysis.

lon Torrent [3, 4]

« studies available showed significant correlation of |
genera identified in lllumina and PGM
 hypervariable regions and unknown primer| -
sequences have a big effect on a lot of aspects of prone,

data, larger than a lot of biological effects: « outside of EPI2ZME analysis:

1) Mixed-orientation reads will inflate diversity estimates. 1) applying ONT to microbial diversity uses a similar approach to previous
2) Reads from the same bacterium but different variable regions may studies, mostly Illumina-based

Nanopore [5]

capturing the entire 16S rRNA gene improved
classification at the genus and family levels,
bacterial species identification is highly error-

be interpreted as different bacteria 2) Limited quality sequences should sometimes be a constraint to apply
3) Some OTUs may be underrepresented and some may be counted existing tools designed for other technologies.

multiple times. 3) The final output from EPI2ZME is usually not compatible with tools for
4) The data becomes impossible to use/reuse when looking for a analyses such as diversity and taxonomic differential abundance.

specific ASV.

Humanization experiment

16S rRNA marker gene sequenced on PGM platform (123 samples) and ONT platform (23 samples)
was done in experiment in which NUDE and NSGC mice were humanized with a single human stool
sample over the course of three months. 123 samples were sequenced using PCM and 23 using ONT
devices and chemistry.

NSG mice

w

"N
)

RNA extraction

CAAGCGTTATC-CGGAATTATTGGGCGTAAAGCGCGCGTACGCGGTT
CAAGCGTTATC-CGGAATTATTGG-CGTAA-GCGCGCGTAGGCGGTT
CAAGCGTTATC-CGGAATTATTGGGCGTARAGCGCGCGTAGGCGGTT
CAAGCGTTATC-CGGAATTATTGGGCGTARAGCGCGCGTAGGCGGTT
CAAGCGTTATC-CGGAATTATTGGGCGTARAGCGCGCGTAGGCGGTT
CAAGCGTTATC-CGGAATTATTGGGCGTARAGCGCGCGTAG-CGGTT
CAAGCGTTGTCCGGGAATTATTGCGCGTAA-GGGCTCGCACGCGGTT
CAAGCGTTGTC-GGGAATTATTGGGCGTARAGGGCTCGCACGCGGGT

Mice stool samples
collected at different
timepoints within

3 months

humanization

16 rRNA gene sequencing

Figure 1
QIIME2 downstream analysis worflow

We have created an alternative downstream analysis workflow in Qiime2 [6] tailored to PGM and ONT
prerequisites. Some of the adjustments and settings are presented in the Figure 2.

4 I
Both: Import as Artifact using manifest file (conforms to Sanger
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Y4

J
J
PGM: DADA2 (denoise-pyro, trim-left=15, trunc=0)

ONT: basic quality filtering; Feature table: VSEARCH (dereplicate)/

~

N

Both: VSEARCH (consensus) against Green Genes, 99%
PGM: align in both directions

PGM: SEPP (fragment insertion method)

Tree ONT: imported 99% Green Genes (rooted)

PGM: Faith PD (metrics incorporating phylogeny) Unifrac

Diversity ONT: same as for PGM (but quantitative metrics were fine too) )

Differential
abundance

Both: ANCOM
AVZAN Y

Figure 2

Results
Quality control

MALOPOLSKA
CENTRE OF
BIOTECHNOLOGY

The higher number of sequenced samples on the PGM platform (126 vs. 23 in ONT) translates directly into

the number of detected features in the two sample sets. However, the alpha-difference curves indicate that
increasing the depth above the values in the table does not cause new biodiversity to appear (alpha-diversity curves
are saturated with the values indicated in the table). At the same time, such sampling depths make it possible to
preserve all collected samples.

FEATURE TABLE SUMMARIES FOR ONT AND PGM

lon Torrent

Oxford Nanopore

23 (22 mice, 1 human, 2

# Samples 126 (123 mice, 1 human, 2 mock) mock)
Unique features 0,877 3,543
Total features 17,908,604 1,130,914
Features per sample (median) 129,097 41,628
Reads per feature (median) 83 11
Features per sample at even 45,000 9000

sampling depth

Features retained at even
sampling

5,850,000 (32.67%)

212,727 (18,8%)

Table 2

lon Torrent and Oxford Nanopore performance comparison

CORRELATION OF BETA DIVERSITY BETWEEN THE TWO PLATFORMS

Mantel Test for unweighted Unifrac
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Procrustes analysis is a form of statistical shape Mouse samples - blue
analysis used to analyse the distribution of a set of shapes.
It can be used in microbial biloogy to compare two
matrices for example to determine whether we would
derive the same beta diversity conclusions. Procrustes
analysis takes as input two coordinate matrices with
corresponding points (generated by running principal
coordinate analysis on a distance generated from for
example weighted UniFrac) and transforming the second
coordinate set by rotating, scaling, and translating it to
minimize the distances between corresponding points in R
the two shapes.
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Conclusions

1. There is a shortage of sophisticated bioinformatic tools for ONT and PGM at the
current level of methodological advancement.

3. Qiime2, can be adapted to facilitate the methodological implications specific to
PGM and ONT with a robust alternative to alignment, taxonomic analysis and
phylogenetic analysis, such as diversity indicators, has been developed.

4. Analyzing sequencing data using a unified QIIME 2 framework, we show that lon

In the case of the lon Torrent, efforts have focused on strategies to combine
results from multiple variable regions and mixed orientations while for Nanopore
it is designing tools for base-calling, demultiplexing and taxonomic assignment.

Torrent and Nanopore results are comparable with each other

References

3. F. Fouhy,, AG. Clooney, C. Stanton et al. 16S rRNA gene sequencing of mock microbial populations- impact of

DNA extraction method, primer choice and sequencing platform. BMC Microbiol. 2016;16:123 16.

4. J.Barb, A. Oler, HS. Kim, et al. Development of an Analysis Pipeline Characterizing Multiple Hypervariable
Regions of 16S rRNA Using Mock Samples. PLoS One. 2016;11(2).e0148047.
5. A.Santos, R.van Aerle, L. Barrientos, J. Martinez-Urtaza, Computational methods for 16S metabarcoding studies

using Nanopore sequencing data, Comput. Struct. Biotechnol. J. 2020;18:296-305.

6. M. Estaki et al. QIIME 2 enables comprehensive end-to-end analysis of diverse microbiome data and
comparative studies with publicly available data. Curr Protoc Bioinformatics. 2020;70:e100.



https://www.thermofisher.com/content/dam/LifeTech/Documents/PDFs/Ion-16S-Metagenomics-Kit-Software-Application-Note.pdf
https://nanoporetech.com/nanopore-sequencing-data-analysis

