
Cost-sensitive feature selection - information theory approach

Feature selection is a crucial problem in many bioinformatics tasks. Usually the considered
variables are cheap to collect and store but in some situations the acquisition of feature values
can be problematic. For example, when predicting the occurrence of the disease we may consider
the results of some diagnostic tests which can be very expensive.

The existing feature selection methods usually ignore costs associated with the considered
features. The goal of cost- sensitive feature selection is to select a subset of features which allow
to predict the target variable (e.g. occurrence of the diseases) successfully within the assumed
budget.

The main purpose of this research is to review filter methods of feature selection based
on information theory and to propose new variants of these methods considering feature costs.

Problem statement

Iterative greedy algorithm

Specific form of greedy algorithm

SOLVE

F FUNCTION 
EXAMPLE

Approximations of the conditional mutual information

Experiments

1. Generate original features from normal distribution X1, X2, …, Xp ~ N(0,1)

2. Generate target variable Y based on X1, X2, …, Xp with binomial distribution.

3. Generate noised features Xi'=Xi + Ej where Ej ~ N(0, σj).

4. Assign cost to each feature ci = 1 and ci(j)’ =
1

1+σj
.

5. Discretize data with uniform method (each bucket range is equal length) for 20
buckets.
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r = 1.01

MIMIC III is one of the most popular medical datasets in the
world. For experiments we use data of 6500 patients.

Types of features:

- basic patient information (Age, gender, …)

- basic medical tests (HR, Blood pressure, …)

- advanced medical tests (Blood tests, Urine tests, ...)

Target variable:

We can choose one of many target variables, each represents
a positive or negative diagnosis of the specific disease. For
experiments on this poster we will focus on hypertension
disease, which almost 4500 patients were diagnosed with.

r = 0.25

ID Feature Cost ID Feature Cost

0 Anion Gap Blood STD 13.0 30 Not clear urine CNT 14.0

1 Anion Gap Blood RNG 13.0 31 Bilirubin in urne NEG 13.0

3 Calcium in blood STD 11.0 32 Color of urine OTHER 1.3

4 Creatinine AVG 12.0 34 Leukocyter in Urine 2.0

5 Creatinine MED 12.0 35 PH of Urnie AVG 3.0

6 Creatinine STD 12.0 36 PH of Urine MED 3.0

8 Phosphate AVG 11.0 37 Gravity of urine AVG 2.0

9 Phosphate MED 11.0 38 Gravity of urine RNG 2.0

10 Potassium AVG 11.0 39 Urobilinogen in urine MEDLeve 3.0

11 Potassium MED 11.0 40 Age 1.0

12 Sodium RNG 17.0 41 Activity tolerance GOOD 1.0

15 Hermatocrit AVG 2.0 42 Activity tolerance POOR 1.0

16 Hermatocrit MED 2.0 43 Body surface at admission 18.0

17 Hemoglobin Blood AVG 2.0 45 Braden moisture 16.0

18 INR in blood MED 14.0 47 Braden Nutrition POOR 16.0

20 Erythrocyte MED 2.0 48 Braden Sensory Percep NO IMPAIR 16.0

21 Erythrocyte volume AVG 2.0 49 Braden Sensory Percep LIMIT 16.0

22 Erythrocyte volume MED 2.0 51 Ectopy Frequency PRESENT 1.0

23 Erythrocyte volume STD 2.0 52 Ectopy type NONE 1.0

24 Platelets in blood RNG 2.0 53 Eye opening SPONTAN 2.0

25 APTT in blood STD 0.0 54 Eye opening STIMUL 2.0

26 APTT in blood RNG 0.0 55 Eye opening NO 2.0

27 Erythrocyte dist MED 2.0 56 Heart Rate AVG 1.5

28 Leukocytes MED 2.0 57 Lung Sound NOT CLEAR 9.0

29 Clear urine CNT 14.0 58 Level of conscious ALERT 1.0
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• Cost sensitive feature selection methods choose variables much more cost efficient than
traditional methods.

• We experimented with various F functions, but division function is the most natural way of
scaling two completely different numbers (costs and information increase).

• We are currently experimenting with r parameter selection, to obtain the best possible
results. Method is based on maximization of J criterion increases.

• In future we will try to extend our selection method to consider features with shared cost.
For example various blood results can be obtained during one test, for which we pay only
once.

https://github.com/Kaketo/bcselector

For the purposes of this research, I created an open-source library in Python, the
library includes:

• Feature selection using information theory.

• Cost sensitive feature selection.

• Generating artificial data sets.

PATIENT

Age, Sex, Overall health, ...

Blood pressure, Weight, ...

Blood tests, Endoscopy, ...

FREE

CHEAP

EXPENSIVE

MODEL or
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Artificial Dataset Feature Selection Procedure

MIMIC3 Dataset

GitHub Conclusions

https://github.com/Kaketo/bcselector
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Introduction

Gene expression and genomic datasets from biomedical studies belong to the so-called
small-n-large-p class. Such datasets describe a relatively small number of objects (records),
counted in tens, hundreds and thousands, using a large number of variables (features),
counted in tens, hundreds and thousands of thousands. Many machine learning algorithms
suffer performance penalties in such a case. Moreover, human analysis of the studied
phenomenon is severely hampered.
Various feature selection algorithms have been proposed to tackle this problem. However,
there might still exist many relevant features. A naive approach of top-N ranking will
usually discard relevant information and still keep sets of variables carrying the exact same
information. Eliminating correlations upfront is of no use because correlation does not map
exactly to information about the decision variable.

Our proposal

We propose an approach to limit the number of variables further by clustering variables
using an existing measure of relevant variable discovery and scoring – the MultiDimen-
sional Feature Selection (MDFS). We searched for clusters of variables having relatively
negligible information gain between themselves. Each cluster is then replaced by the clus-
ter representative variable. There are, however, several ways to build such clusters, even
when constrained to hierarchical methods. There are also different ways to choose the
representative.

Datasets under scrutiny

The presented results have been obtained on datasets from the CAMDA 2017 Neuroblas-
toma Data Integration Challenge. There are 3 datasets in total, all describing the same set
of 145 patients:
•CNV – 39 115 array comparative genomic hybridization (aCGH) copy number variation

(CNV) profiles,

•MA – 43 349 GE profiles analysed with Agilent 44K microarrays,

•G – 60 778 RNA-seq GE profiles at gene level.

Methodology

The basis for our research is the information gain (IG) metric as obtainable from MDFS. In
particular, the interesting one is the two-dimensional MDFS variant, also called MDFS-2D.
Such a metric can be computed two-way, once to obtain the potential relevant variables
list (along with their tentative ranking). Secondly, to compute all pairwise IG values for
selected features. These both serve as the input to further, clustering algorithms which are
meant to remove redundancy from the selection.
It is unknown upfront what threshold of IG is relevant for a particular case. Hence,
we compute classification score using random forest OOB score from features selected at
integer levels of IG threshold (since they map to integer increases in explainability).
The potentially relevant features are discovered using MDFS-2D with 30 random discreti-
sations and Benjamini-Yekutieli p-value adjustment. The cutoff threshold is set to 0.10.

Proposed algorithms

We reuse the concept of hierarchical clustering applied in a bottom-up fashion (i.e. starting
from one-feature clusters) but modify its linkage properties. The most common linkage
– single (also known as minimum linkage) does not suit the problem well because of its
tendency to merge early. There is also no clear notion of the cluster representative in the
basic hierarchical clustering. Average linkage does not apply either because it is not known
what an average feature would mean. Hence, we propose representative-based linkage with
3 ways to establish the representative:

•HCN – hierarchical clustering with native (natural) ordering – using the ordering from
all tuples of potentially relevant variables,

•HCO – hierarchical clustering with original ordering – using the ordering from initial
MDFS-2D output,

•HCS – hierarchical clustering with subset ordering – using the ordering from MDFS-2D
applied only on potentially relevant variables.

Discussion

The different variants of the algorithm behave differently and may give varying results even
with the same threshold and/or number of clusters.
The subset variant (HCS) performs noticeably worse. This might be due to losing the
information about really relevant variables.
Further research is required, including different datasets, especially artificial ones with a
known structure, and cross-validation.
Furthermore, it can be argued that reapplying clustering algorithms designed for object
clustering may give suboptimal results for feature clustering as they disregard important
properties not present in object relations, e.g. correlations and synergies. For such cases a
more dedicated approach might be needed.

Results

CNV MA G

IG HCN HCO HCS HCN HCO HCS HCN HCO HCS

1 150 0.24 142 0.22 150 0.21 978 0.12 991 0.12 974 0.16 1194 0.12 1195 0.12 1184 0.13
2 98 0.21 100 0.22 96 0.21 447 0.13 460 0.11 450 0.13 547 0.10 574 0.10 544 0.12
3 59 0.21 57 0.17 63 0.22 218 0.10 227 0.12 216 0.13 271 0.09 291 0.07 276 0.13
4 40 0.17 39 0.19 36 0.19 106 0.09 120 0.10 107 0.12 137 0.07 152 0.08 142 0.11
5 26 0.19 23 0.17 26 0.19 53 0.08 71 0.08 60 0.14 67 0.08 72 0.08 76 0.15
6 13 0.15 13 0.15 17 0.17 28 0.10 43 0.07 37 0.12 36 0.08 40 0.07 45 0.12
7 11 0.15 10 0.17 10 0.20 15 0.09 26 0.08 19 0.12 20 0.08 20 0.08 25 0.13
8 8 0.13 8 0.16 6 0.20 9 0.11 18 0.07 13 0.13 15 0.10 15 0.08 18 0.14
9 6 0.13 6 0.17 4 0.22 7 0.12 11 0.08 9 0.10 9 0.12 8 0.12 9 0.13
10 5 0.17 5 0.15 4 0.22 5 0.12 6 0.10 7 0.10 5 0.15 5 0.15 5 0.15
11 2 0.14 2 0.24 1 - 3 0.13 6 0.10 3 0.12 3 0.14 4 0.10 3 0.19
12 2 0.14 1 - - - 2 0.15 3 0.15 2 0.13 1 - 3 0.12 3 0.19
13 2 0.14 - - - - 1 - 3 0.15 2 0.13 - - 1 - 3 0.19
14 1 - - - - - - - 3 0.15 - - - - - - 2 0.18
15 - - - - - - - - 2 0.19 - - - - - - 2 0.18
16 - - - - - - - - 2 0.19 - - - - - - 2 0.18
17 - - - - - - - - 1 - - - - - - - 1 -

The very first column (IG) shows the threshold at which the result is obtained. First subcolumn of the following
columns shows the number of clusters (representing features). Second shows the OOB score (the less, the better; the

best score in bold).
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Microbiome Immunity Project (MIP)

•Human gut microbiome comprises about 3 million unique bacterial genes

•Main goal of the MIP [1] is to understand the role played by microbiome bacteria

•Exploring them would give us a possibility to treat diseases that originate in our microbiome

In the first stage of the project we want to map all proteins produced by those bacteria. For
this purpose we prepared a dataset consisting of ∼300,000 unique newly predicted structures
which we call MIP 1.0. We used two methods: Rosetta [2] and DMPFold [3] which utilize
different approaches to the protein structure prediction problem.

In the poster we are showing differences between both methods with special emphasis on new
folds identification and structure space visualization. We also plan to create an open access
database that anyone can use in their own analysis.

Rosetta vs DMPFold

Rosetta

•Developed in 2002 but constantly improved

•Monte Carlo search through space of con-
formations to find minimal energy fold

DMPFold

•Developed in 2018 deep learning based pro-
cedure of inter-atomic distances, torsion an-
gles and hydrogen bonds prediction

• Faster than Rosetta; predicts less α (more
α/β and β) structures

References
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New folds

Working definition: structures with
TM-score below some predefined threshold
(usually 0.5) with respect to the known fold
space.

Non-redundant databases (our choice):

•CATH superfamilies (6119) – done

•PDB90 (∼60k) – to be done

TM-score:

]0 – 0.5[ [0.5 – 0.1]
different folds same folds

Structure space visualization

• Structure models were encoded using pretrained autoencoders

•Number of dimensions was further reduced using UMAP

•Visualizations show ∼9,000 Rosetta and DMPFold models

What’s next?

•Our ultimate goal is to reach ∼1,000,000 annotated protein models

•MIP 2.0 will gather structures from the Unified Human Gastrointestinal Genome catalogue

• For structure prediction we will use trRosetta [4] – improved, deep learning inspired Rosetta

www.worldcommunitygrid.org/research/mip1/overview.do
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• The human gut microbiome contributes to the development and persistence 
of diseases such as type-1 diabetes (T1D), ulcerative colitis, obesity and 
many others.

• Exact mechanisms of how gut microbiota influences health remains poorly 
understood. 

• Only 50% of microbial protein-coding genes may be functionally annotated.
• Low functional annotation coverage poses a major challenge in 

understanding of how the microbiome contributes to certain disease 
phenotypes.

• We aim to characterize the functional potential of the human gut 
microbiome in type-1 diabetes. 

• Diabimmune infant gut microbiome cohort data previously collected in 
Finland, Estonia and Russian Karelia as case study

• Shotgun metagenome sequencing (1067 samples)
• A custom metagenomics annotation pipeline based on DeepFRI machine 

learning protein function annotation method
• Our method integrates de novo genome reconstruction, taxonomic profiling 

and functional annotation 

Taxonomy aware function annotation pipeline

Predicted Gene ontology terms 
Annotation method Gene ontology terms predicted

DeepFRI (CNN-MF model) 13,896,275

EggNOG 280,959

Assembly Count
Contigs 17 M

MAG genes 1.7 M

NR- gene catalogue 1.9 M

• Result shows that DeepFRI method increases the annotation coverage
• Next step is to expand the annotations to incorporate 3D structure 

DeepFRI predictions

Abundant species in the Diabimmune datasets

Proportion of genes annotated with EggNOG, Humann2 and DeepFRI 
methods

We observed an increase in annotation coverage with DeepFRI compared 
to Humann2 and EggNOG

Assembly and gene prediction statistics

Methods overview

ResultsIntroduction

Datasets

DIABIMMUNE data
(fastq files)

1,067 samples

Assembly
Megahit

Binning
Metabat2

Gene prediction
Prodigal

Non-redundant gene 
catalog

Gene clustering 
CD-Hit

Taxonomic assignment

Functional annotation

Quality and completeness of metagenome assembled genomes Conclusions

References

Genome quality threshold of  >90% genome completeness and <5% 
contamination, the final genomes matching these criteria were  2,256
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Pipeline implemented in WDL



Standardizing 16S rRNA gene sequencing downstream analysis 
for Oxford Nanopore and Ion Torrent technologies
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https://www.thermofisher.com/content/dam/LifeTech/Documents/PDFs/Ion-16S-Metagenomics-Kit-Software-Application-Note.pdf
https://nanoporetech.com/nanopore-sequencing-data-analysis

