BioMetaNet: Meta-Network model for human lymphoblastoid cell (7).
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Introduction Gene-Ontolo GO), Pathways and Single Nucleotide
Polymorphism (SNPs) Mappin

In recent years, with the development of high throughput methods, researchers obtained access to
a vast array of biomolecular interaction data. Most of these biological data can be represented as
networks or graphs. Thus, network analysis 1s becoming a powerful tool for modeling biological
systems. We propose a meta-network representation of the complete map of DNA pairwise
interactions for human lymphoblastoid cell lines combined with information about encoded
proteins and metabolic pathways. In a single graph (meta-network) we integrate multiple
biological networks, namely, Chromatin Interaction Network (CIN), Genomic Association
Network (GAN), Protein-Protein Interaction Networks (PIN), Gene Ontology (GO) terms, and
metabolic pathways. Thus cheating the meta-network connecting 3D chromatin interaction to

functionality.
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We analyzed the meta-network and found proteins P28062 and P28065 encoded by genes
PSMBS8 and PSMB9, present in location chr6:32014923-33217929, share around 60 pathways

 ' which are higher than the average concentration of metabolic pathways shared between two
proteins.
Anchors o q o .
\ / Critically, the genes PSMB8 and PSMB9 are also connected by proximity with HLA genes and

TAP genes using the proteomic networks. The protein P28062 and P28065 are two of the 17
essential subunits (alpha subunits 1-7, constitutive beta subunits 1-7, and inducible subunits

The meta-network can give us 1nsigths into the interactions between genomic, proteomic and

/" Gene-Gene Ampeaton N\ including betali, beta21, beta51) that contribute to the complete assembly of the
chromatin (structural) networks. In particular: the proteins P28062 and P28065, due to a large
numer of shared pathways and the proximity of their encoding genes to the known autoimmune-

20S proteasome complex.
\ .\Chmmatin-lnterﬂctiun Network ’/
related genes, can be critical for studies of autoirmmune disease. Moreover, the presence of

[
/ Conclusion
essential genes and proteins, the study of genome rearrangements in from of structural variants
Creating PPI Network

in this region can give us novel insights into the study of autoirmmune diseases.

/ \ In conclusion, our meta-network model can be instrumental 1n getting a complete picture of
PPIDB o biological functionality linked with 3D chromatin interactions. The network can also be extended
[ e ] [ — ] St 1 e o to incorporate Structural Variants which can provide an 1dea of how functionality varies with the
\d mapping by my Physial expeciments ) larger genome rearrangement.
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MASTERMIND: THE BEST LINEAR MODEL
TO ACCURATELY DETERMINE MONOISOTOPIC MASS
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Abstract

Nowadays, monoisotopic mass is used to be an important feature in top-down proteomics. Knowing the exact monoisotopic mass enables precise and quick protein identification in large
protein databases. However, only in spectra of small molecules monoisotopic peak is visible, for bigger molecules position of the peak have to be predicted. By improving prediction of the
peak, we contribute to more accurate identification of molecules, what is crucial in fields such as chemistry and medicine. In this work we present MASTERMIND algorithm, that is a
two-step procedure to predict monoisotopic mass for proteins with 8-400 kDa mass range. The first step is to approximate monoisotopic mass by linear regression based on average mass and
variance of a given spectrum. The second step rounds linear prediction to the closest point which is reliable to be a peak in the spectrum. For 96.6% of proteins, prediction error is below 0.2
ppm, what is approx. 30% better than in recently proposed MIND tool. Our algorithm was implemented in python, data analysis was performed in R. Proteins to learn the model comes
from Uniprot database, their theoretical spectra were calculated by use of IsoSpec structure calculator.

MASTERMIND algorithm How rounding improves prediction?

I. INITIAL PREDICTION —= {5 15
At the beginning, we calculate initial prediction of monoisotopic mass, by use of spectrum’s % % o .
average mass and variance: E o
A & O
Mmono - 50 + 6avg ' Mavg + 5\/&1‘ . Mvar- E I"E ° °
Prediction is not good enough for practical use, however, for 96.6% proteins prediction S 0
error is smaller than 0.5 Da, what is crucial for our algorithm. We want to round initial el let e 0 10
prediction to closest point on the grid
W(C,A)={Cn+A : neN}, 3 g . 0
which determine where peaks that are not visible on spectrum should be. £ =
s o 100 100
QO C
w 2
II. EESTIMATION OF THE GRID STEP ( 2 = 50 50
© >
o
Grid step (C, is equivalent to circumierence of circle, that rolled through spectrum concen- °o0 m I 0
-1.0 -0.5 0.0 0.5 1.0 -10 0 10
trates all peaks on the smallest arch. prediction error [Da] prediction error [ppm]
G—* Comparison with MIND
: ; l > MIND prediction is based on the most-abundant peak, MASTERMIND is based on
Mathematicaly, we have average peak and variance;
(o = argmin Var P (S), > MASTERMIND is close to true monoisotopic mass in 96.6% versus 66.5% for MIND:
CeR

> MASTERMIND is better in every mass range it was compared with MIND. and is trained

where bi .
% omiz / o on bigger mass range;
Pe(z) = 5 log | exp c zlm[ log ( Z;p Y (27’(’2]? / C))] ' > MASTERMIND loses accuracy fast, when spectrum resolution is getting worse:
L J4S g
To avoid long calculation for each protein, we trained linear model that gives (; based on -1 Da 0 Da +1 Da
protein average mass ) 1000 1000 10007 Method
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[II. ESTIMATION OF THE GRID SHIFT A €
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2 . . S,
When we have (, we calculate grid shift, to fit the grid into spectrum O
A = argmin Y PP - min  [p™* - w| = Re L log( > PPl exp (2mip™/ ¢ )) . 250 250
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To obtain final prediction, we round initial prediction to closest point on the fitted grid, What next?
and apply slight correction

N

Moono = argmin ‘w - Mmono‘ + A+ Miono- > Elaborate a method, that finds average mass and variance regardless of spectrum reso-
weW((,A) lution;
Data & Tools > Test MASTERMIND on real spectra;
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A novel approach to search for interdigitated proteins - unusual domain

swapped topology
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Introduction Interdigited protein example

Interdigiteted motives are specific cases

of protein domain swapping [1] including
secondary structures from two different
polypetide chains creating a single beta sheet.
Additionally, interdigiteded stuctures consist
of interchangeable occurrence of beta strands

from different chains in beta-sheet.

In our work we search Protein Data Bank|2]
for proteins that have the motive described
earlier. For this task we used BioShell [3], [4]
and graph theory. For further analysis, a group
of proteins with the longest six-element beta

sheet was adopted, in which their structural,

sequential and functional similarity was studied. Protein with six-element interdigitated beta sheet - AF2331(5]. Darker colors represent
secondary structures involve in motive.

Graph theory application Interdigited protein - examined group of proteins

In our project we applied graph theory

to describe interactions between beta strands.
For this work we state that each vertex

of a graph is single beta strand. If the stands
create a hydrogen bond, we assume an edge

of the graph between them. To check if the beta
sheet 1s interdigitated, we color the graph

depending on the assignment of a beta strand
to its protein chain. At this point, the depth-first
search algorithm is used to gather information
if interacting strands belong to different chains.
The information collected also enables analysis
in relation to the length of the motif.
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Schematic application of the algorithm on the

example of protein AF2331 Siux proteins with six-element interdigitated beta sheet obtained by analysis

Conclusions Basic informations about examined group of proteins

e Our approach has allowed us to 1dent1fy new Protein (PDBid.) Year of publication = Sequence length [aa] Homodimer? Original organism Crystal system  Resolution of measurement [A]
: dioi d : 1WZ3 2005 96 Yes Arabidopsis thaliana C2 1,8
Interdigitated proteins. 2H]J1 2006 97 Yes Haemophilus influenzae C2 2,1

* We identity six proteins with six-element 2PJS 2007 119 Yes Agrobacterinum fabrum C2 1,85

. . 4CNO 2014 97 Yes Homo sapiens C2 1,75
lntedlglteted beta sheet. 4CMZ 2014 92 Yes Homo sapiens C2 2,7

e All of them are homodimers and their length 2FDO 2005 94 Yes Arcbaeoglobm fulgz’dm C2 2,4
does not extend beyond 120 aminoacids.
* We also identified a group of proteins with

a smaller beta card. However, more research References

is needed in this subject. 1 M.]J. Bennett, S. Choe, and D. Eisenberg, “Refined structure of dimeric diphtheria toxin at 2.0 A resolution,” Protein Sci., 1994, doi: 10.1002/pro.
e A her ; . .. . . hich 5560030911.
nother interesting topic 1s proteins, in whic 2 H. M. Berman et al., “The Protein Data Bank,” Nucleic Acids Research. 2000, doi: 10.1093/nar/28.1.235
inter djgitated beta sheets are formed 3 D. Gront and A. Kolinski, “BioShell - A package of tools for structural biology computations,” Bioinformatics, 2006, doi: 10.1093/bioinformatics/
btk037.
. 4 J.M. Macnar, N. A. Szulc, J. D. Krys, A. E. Badaczewska-Dawid, and D. Gront, “Bioshell 3.0: Library for processing structural biology data,”
more than two chains. Biomolecules, 2020, doi: 10.3390/biom10030461.
5 S. Wang et al., “The crystal structure of the AF2331 protein from Archaeoglobus fulgidus DSM 4304 forms an unusual interdigitated dimer with a
new type of a + [ fold,” Protein Sci., 2009, doi: 10.1002/pro.251.

by interactions of secondary elements from




BioShell software can

efectivelly analyze rings
N small compounds

Analysis of small molecules parameters
in ligand-protein complexes
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Intro Results

Structural information about ligand- We analyzed 271 structures, thet were complete and determined by X-ray
macromolecule complexes is critical crystallography out of 5673 deposites that contained NAG ligands. A a referenceing
for biomedical sciences. This X-ray crystallography. As a refence structure the ideal.sdf file form PDB was used.

ideal NAG structure

analysis will lead to an improved ..
library of restraint parameters and 0.03 L.
subsequently better refinement of . :
ligand-protein  complexes  which 0.02 .
contain 2-acetamido-2-deoxy-beta- _ ) . ) :
D-glucopyranose (NAG). = 0.01 S - . O

Y S S S S — SR S R -
Methods ? . Y - RS -
We chose the most common small  » : I : R - "
molecule from PDB which = ' "e . :
participates in a biological pathway = U : ,
and has one aliphatic ring. We found o : :

5673 deposits and used BioShell - :
package to analize their geometry.
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membpber ring over time.
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