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In recent years, with the development of high throughput methods, researchers obtained access to

a vast array of biomolecular interaction data. Most of these biological data can be represented as

networks or graphs. Thus, network analysis is becoming a powerful tool for modeling biological

systems. We propose a meta-network representation of the complete map of DNA pairwise

interactions for human lymphoblastoid cell lines combined with information about encoded

proteins and metabolic pathways. In a single graph (meta-network) we integrate multiple

biological networks, namely, Chromatin Interaction Network (CIN), Genomic Association

Network (GAN), Protein-Protein Interaction Networks (PIN), Gene Ontology (GO) terms, and

metabolic pathways. Thus cheating the meta-network connecting 3D chromatin interaction to

functionality.

Introduction

Methods

Results

Conclusion

The meta-network can give us insigths into the interactions between genomic, proteomic and

chromatin (structural) networks. In particular: the proteins P28062 and P28065, due to a large

numer of shared pathways and the proximity of their encoding genes to the known autoimmune-

related genes, can be critical for studies of autoimmune disease. Moreover, the presence of

essential genes and proteins, the study of genome rearrangements in from of structural variants

in this region can give us novel insights into the study of autoimmune diseases.

In conclusion, our meta-network model can be instrumental in getting a complete picture of

biological functionality linked with 3D chromatin interactions. The network can also be extended

to incorporate Structural Variants which can provide an idea of how functionality varies with the

larger genome rearrangement.
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We analyzed the meta-network and found proteins P28062 and P28065 encoded by genes

PSMB8 and PSMB9, present in location chr6:32014923-33217929, share around 60 pathways

which are higher than the average concentration of metabolic pathways shared between two

proteins.

Critically, the genes PSMB8 and PSMB9 are also connected by proximity with HLA genes and

TAP genes using the proteomic networks. The protein P28062 and P28065 are two of the 17

essential subunits (alpha subunits 1-7, constitutive beta subunits 1-7, and inducible subunits

including beta1i, beta2i, beta5i) that contribute to the complete assembly of the

20S proteasome complex.
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Abstract

Nowadays, monoisotopic mass is used to be an important feature in top-down proteomics. Knowing the exact monoisotopic mass enables precise and quick protein identification in large
protein databases. However, only in spectra of small molecules monoisotopic peak is visible, for bigger molecules position of the peak have to be predicted. By improving prediction of the
peak, we contribute to more accurate identification of molecules, what is crucial in fields such as chemistry and medicine. In this work we present MASTERMIND algorithm, that is a
two-step procedure to predict monoisotopic mass for proteins with 8-400 kDa mass range. The first step is to approximate monoisotopic mass by linear regression based on average mass and
variance of a given spectrum. The second step rounds linear prediction to the closest point which is reliable to be a peak in the spectrum. For 96.6% of proteins, prediction error is below 0.2
ppm, what is approx. 30% better than in recently proposed MIND tool. Our algorithm was implemented in python, data analysis was performed in R. Proteins to learn the model comes
from Uniprot database, their theoretical spectra were calculated by use of IsoSpec structure calculator.

MASTERMIND algorithm

I. Initial prediction

At the beginning, we calculate initial prediction of monoisotopic mass, by use of spectrum’s
average mass and variance:

M̂mono = β0 + βavg ⋅Mavg + βvar ⋅Mvar.

Prediction is not good enough for practical use, however, for 96.6% proteins prediction
error is smaller than 0.5 Da, what is crucial for our algorithm. We want to round initial
prediction to closest point on the grid

W(ζ,∆) = {ζn +∆ ∶ n ∈ N},
which determine where peaks that are not visible on spectrum should be.

II. Estimation of the grid step ζ

Grid step ζ , is equivalent to circumference of circle, that rolled through spectrum concen-
trates all peaks on the smallest arch.

Mathematicaly, we have
ζ0 = argmin

ζ∈R
VarPζ(S),

where

Pζ(z) =
ζ

2πi
log [ exp(2πiz

ζ
− iIm[ log (∑

p∈S
pprob ⋅ exp (2πipmass/ζ))])].

To avoid long calculation for each protein, we trained linear model that gives ζ0 based on
protein average mass

ζ̂ = γ0 + γavg ⋅Mavg.

III. Estimation of the grid shift ∆

When we have ζ̂ , we calculate grid shift, to fit the grid into spectrum

∆̂ = argmin
∆∈[0,ζ̂]

∑
p∈S
pprob ⋅ min

w∈W(ζ̂ ,∆)
∣pmass −w∣ = Re[ ζ̂

2πi
log(∑

p∈S
pprob ⋅ exp (2πipmass/ζ̂))].

IV. Final prediction

To obtain final prediction, we round initial prediction to closest point on the fitted grid,
and apply slight correction

ˆ̂Mmono = argmin
w∈W(ζ̂ ,∆̂)

∣w − M̂mono∣ + λ ⋅ M̂mono.

Data & Tools

⪧Chemical formulas used to train models comes from Uniprot database;

⪧Their spectra were calculated by IsoSpec structure calculator;

⪧MASTERMIND algorithm was implemented in python, data analysis was performed in
R. To calibrate linear models we used 10-fold cross-validation;

This research is supported by the Polish National Science Center grants
2018/29/B/ST6/00681 and 2017/26/D/ST6/00304.

How rounding improves prediction?

Comparison with MIND

⪧MIND prediction is based on the most-abundant peak, MASTERMIND is based on
average peak and variance;

⪧MASTERMIND is close to true monoisotopic mass in 96.6% versus 66.5% for MIND;

⪧MASTERMIND is better in every mass range it was compared with MIND, and is trained
on bigger mass range;

⪧MASTERMIND loses accuracy fast, when spectrum resolution is getting worse;

What next?

⪧Elaborate a method, that finds average mass and variance regardless of spectrum reso-
lution;

⪧Test MASTERMIND on real spectra;

References

Mateusz K.  L ↪acki, Micha l Startek, Dirk Valkenborg, Anna Gambin,
2017, IsoSpec: Hyperfast Fine Structure Calculator, Analytical Chemistry, vol. 89(6).

Frederik Lermyte et al., 2019, MIND: A Double-Linear Model To Accu-
rately Determine Monoisotopic Precursor Mass in High-Resolution Top-Down Pro-
teomics, Analytical Chemistry, vol. 91(15).

Contact us!
pmradzinski@mimuw.edu.pl michal.startek@mimuw.edu.pl





BioShell software can 
efectivelly analyze rings 
in small compounds
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Intro
Structural information about ligand-
macromolecule complexes is critical 
for biomedical sciences. This 
analysis will lead to an improved 
library of restraint parameters and 
subsequently better refinement of 
ligand-protein complexes which 
contain 2-acetamido-2-deoxy-beta-
D-glucopyranose (NAG).

We chose the most common small 
molecule from PDB which 
participates in a biological pathway 
and has one aliphatic ring. We found 
5673 deposits and used BioShell 
package to analize their geometry. 

Methods
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Results

Figure 3

ideal  NAG structure all completeNAG structuresfrom PDB

Conclusions
More reaserch is needed:

 The quality of NAG 
structures has remained 
roughly constant for 20 
years
   Correlation to electron 
density map should be 
included for better 
analysis
  Missing ligand atoms 
are a common problem 
in deposits
 BioShell is a suitable 
package for ligand 
geometry analysis.

Figure 2

Figure 1

The average deviation of the bond lenght comparing to the ideal structure

Scatter, KDE plots and histograms showing 
three subsequent torsion angles from a six 
member ring.
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Conformational analysis of NAG rings
showing improvementdeposit quality
over time.

We analyzed 271 structures, thet were complete and determined by X-ray 
crystallography out of 5673 deposites that contained NAG ligands. A a referenceing 
X-ray crystallography. As a refence structure the ideal.sdf file form PDB was used.ideal.sdf


