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REFERENCES

●Here we introduce a new method based on canonical correlation analysis 
(CCA) that uses real-life dataset to meet the challenge of melanoma 
biomarker discovery [1-2]. The bioinformatics pipeline was successfully 
applied to human skin melanoma multi-OMICS datasets containing: (1) 
microvesicle micro-RNA transcriptomics, (2) microvesicle proteomics, (3) 
cell-total-RNA transcriptomics.

●The method applies a sparse CCA (sCCA) to three matrices, starting from 
features correlation across integrated experimental data [3].

●Validation using clinical data as well as supporting meta-data from 
extracellular vesicle dedicated databases allows the identification of 
evidence-based candidates for highly significant molecular signatures like 
melanoma-associated microRNAs and oncoproteins.

CHALLENGE

●Next Generation Sequencing (NGS) and other advanced large-scale 
experimental methods provide enormous amounts of multi-dimensional 
biological data. Understanding the interactions between transcriptomics, 
proteomics and other types of data generated using different platforms is 
fundamental. In such analyzes, the  integration of multiple OMICS datasets 
together and selection of variables is a key to obtain interpretable results. 

●Canonical Coronation Analysis (CCA) is one of the most powerful method 
for this bioinformatic challenge. Over the last years, a number of promising 
results for implementing CCA in the integration of OMICS data have been 
proposed [4-5]. 

Fig. 1 Multi-omics data integration and analyses as effective method for 
identification of the biomarker candidates using information of biological 
interrelationships, bioactive molecules and their functions.

MELANOMA MODEL

●We used two melanoma cell line models: 
○WM115: a primary vertical growth phase cell line and WM266-4: a lymph 

node metastasis vertical growth phase cell line. Bothe established from the 
same patient.

○WM793: a primary vertical growth phase cell line and WM1205Lu: a 
metastatic vertical growth phase cell line. First  established from patient and 
second from nude mice lung metastases.
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Fig. 2 Melanoma cell lines: WM115, WM266-4, WM793, WM1205Lu 
originated from the European Searchable Tumour Cell Line and Data Bank 
(ESTDAB)- A Collection of Immunologically Characterised Melanoma Cell 
Lines and Databank (Tübingen, Germany).

●As an input data we used proprietary microvesicle micro-RNA transcriptome 
and open source datasets for microvesicle proteome and cells total-RNA 
transcriptome [6-7]. Each data type was derived for standardized cell lines: 
WM115, WM266-4,  WM793 and WM1205-Lu.

●Data analysis and interpretation was done using method based on sparse 
canonical correlation bioinformatics method developed in our research group 
(Fig. 2).

●To conduct sparse CCA we use matrices which represent different sets of 
features (1) microvesicle micro-RNA transcripts, (2) microvesicle proteins and 
(3) cell-total-RNA transcripts. on the same set of melanoma cell lines samples. 
Multi-OMICS dataset has samples in rows and the features on columns. 
Prepared matrices always had the same number of rows, but had different 
numbers of columns.

● In next step there was the visualization of highest correlated features and a list 
of this features with respective ranks.

●Last step provided pathways analysis and annotations supporting each 
functional insight from extracellular dedicated databases.

1.Ryan Van Laar, Mitchel Lincoln, and Barton Van Laar. Development and validation of a 
plasma-based melanoma biomarker suitable for clinical use. British Journal of Cancer, 
118(6):857–866, January 2018.

2.Su Yin Lim, Jenny H. Lee, Russell J. Diefenbach, Richard F. Kefford, and Helen Rizos. Liquid 
biomarkers in melanoma: detection and discovery. Molecular Cancer, 17(1), January 2018.

3.Daniela Witten, Robert Tibshirani, and Trevor Hastie. A penalized matrix decomposition, with 
applications to sparse principal components and canonical correlation analysis, Biostatistics, 
10(3):515-534, July 2009.

4.Theodoulos Rodosthenous, Vahid Shahrezaei, and Marina Evangelou. Integrating multi-OMICS 
data through sparse canonical correlation analysis for the prediction of complex traits: a 
comparison study. Bioinformatics, 36(17) May 2020.

5.Helian Feng, Nicholas Mancuso, Alexander Gusev, Arunabha Majumdar, Megan Major, Bogdan 
Pasaniuc and Peter Kraft. Leveraging expression from multiple tissues using sparse canonical 
correlation analysis and aggregate tests improve the power of transcriptome-wide association 
studies. July 2020.

6.Magdalena Surman , Sylwia Kędracka-Krok, Dorota Hoja-Łukowicz, Urszula Jankowska, Anna 
Drożdż, Ewa Ł. Stępień and Małgorzata Przybyło. Mass Spectrometry-Based Proteomic 
Characterization of Cutaneous Melanoma Ectosomes Reveals the Presence of Cancer-Related 
Molecules. International Journal of Molecular Sciences , 21(8), 2934, March 2020

7. Dieudonne van der Meer, Syd Barthorpe, Wanjuan Yang, Howard Lightfoot, Caitlin Hall, James 
Gilbert, Hayley E Francies and Mathew J Garnett. Cell Model Passports—a hub for clinical, 
genetic and functional datasets of preclinical cancer models. Nucleic Acids Research, 
47(D1):D923–D929, January 2019.

8.Website: http://www.microvesicles.org/ and http://www.exocarta.org/ . Date of access: 
11.11.2020 

●Proposed method detected important signatures in multi-omics datasets and 
identified biomarkers candidates like circulating cancer-associated 
microRNAs and oncoproteins. 

●Pipeline ranked significant biological features using sCCA  score.
●Method allowed to examine the biological processes related with melanoma 

progression by selecting molecular signatures that have supporting evidence 
in databases.

●Method is dedicated to extracellular melanoma biomarker identification but 
it is  elastic and can be adapted to research on other data and cancer types.

●  Selected top 30 highest ranked biological features were used for functional 
analysis starting with finding the most important interactions. We combine 
RNA interactome: http://www.rna-society.org/rnainter/ with protein 
interactome: https://string-db.org/ . We use only strongest experimental 
evidences with highest confidence score (>0.9). 

●The three most important connection clusters were selected (Fig. 6). The 
clusters were supplemented with information from databases dedicated to 
extracellular microbes. Based on these data, two very significant protein with 
strong evidence for melanoma were found: IGF2R (protein ID: P11717, 
ExoCarta ID: ExoCarta_3482) and EFTUD2 (protein ID: Q15029, ExoCarta 
ID: ExoCarta_9343).

●The interactome study based on top 30 features also showed functional 
molecular enrichments like telomeric and damaged DNA binding or protein 
tyrosine kinase related pathways.

Fig. 5 Interactome analysis. We identify two oncoproteins with strong evidence for  
extracellular vesicles derived melanoma processes: IGF2R (protein ID: P1171) and 
EFTUD2 (protein ID: Q15029).

Table 2. Functional enrichments in study network.    

Molecular Function (Gene Ontology)
GO term description
GO:0042162 telomeric DNA binding
GO:0004714 transmembrane receptor protein tyrosine kinase activity
GO: 0003684 damaged DNA binding
GO:0019955 cytokine binding
GO:0004713 protein tyrosine kinase activity

●  We identified highly correlated microRNA, proteins and totalRNA (Fig. 4 and 
Table 1). The top 30 highest ranked by the algorithm were selected for further 
analysis steps (five each with the highest negative and positive correlation 
from each of the data types).

Fig. 4 Visualization of sCCA results for melanoma: microvesicles miRNA,  
microvesicles proteins and cell totalRNA. The x-axis shows features, while the 
y-axis shows the cCCA score. Presented bioinformatic method allows to adjust 
the number of displayed features, starting with the most important ones.

miRNA ID sCCA score protein ID sCCA score RNA (Gene) ID sCCA score
MIMAT0002866 3,95E-01 Q15029 4,45E-01 AMIGO2 5,45E-01
MIMAT0002837 3,86E-01 Q14103 4,17E-01 SVEP1 3,60E-01
MIMAT0004687 3,73E-01 P25788 3,73E-01 IL31RA 3,38E-01
MIMAT0000724 3,67E-01 P27695 3,30E-01 RPS14P8 3,07E-01
MIMAT0000281 3,58E-01 Q6DD88 2,98E-01 ZNF812P 2,88E-01
MIMAT0002859_1 3,15E-01 O95232 1,99E-01 HEATR4 2,81E-01
MIMAT0002838 3,01E-01 P11717 1,15E-01 GFRA1 2,72E-01
MIMAT0002835 2,76E-01 Q9Y6E0 6,95E-02 NRP1 2,67E-01
MIMAT0002855 1,31E-01 P07195 3,17E-01 HRH1 2,24E-01
MIMAT0002833 9,78E-02 Q16186 3,61E-01 NCLP1 6,58E-02

Table 1. Results for 30 top scored sCCA melanoma 1) microvesicles miRNA, 
2) microvesicles proteins and 3) cell totalRNA with sCCA scores.

Fig. 3 Method overview. a) Method requires three input matrices for different 
genomics features for the same set of samples. In this study we used (1) 
microvesicle-micro-RNA transcripts, (2) microvesicle proteins and (3) 
cell-total-RNA transcripts for four melanoma cell lines models: WM115, 
WM266-4, WM793 and WM1207Lu.  b) Method provides visualization of 
highest correlated features and a list of this features with ranks. c) Last step 
provides pathways analysis and annotations supporting each functional insight 
from extracellular dedicated databases for example: ExoCarta 
(www.exocarta.org), Vesiclepedia (www.microvesicles.org)  [8].
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c. Results: biomarker candidates with supporting biological findings 

Biomarker 
candidates

Supporting biological findings:

● enriched pathways
● databases annotations

mechanistic and functional hypotheses

OMICS DATA
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MULTI- OMICS DATA INTEGRATION AND 
ANALYSIS BIOLOGICAL HYPOTHESIS

BIOMARKER 
CANDIDATES

Interpretable results:

● supporting evidences

● mechanistic and functional  
hypothesis

● phenotype predictions

Metabolomics
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INTRODUCTION

CONCLUSIONS

Gliomas are one of the most common and deadly cancers and because of that are intensively studied. At the same time, one of the most promising and still unfathomable
issue is the role of the REST transcription factor in brain carcinogenesis processes. On the other hand, the canonical role of REST is regulation of neurogenesis and glial cells
development and participation in the neurosecretion process. REST is the main repressor of transcription in neurodegenerative diseases and is associated with the
regulation of ion channels and cytoskeletal proteins, but also other transcription factors (TFs). Therefore REST is described as both, activator and repressor of transcription
depending on physiological or pathophysiological context. The purpose of this study was to check whether any TF motifs overlap or are in close proximity to REST
Transcription Factor Binding Sites (TFBS).

• We identified 202 TF motifs (12 REST motifs) in the 200bp sequences surrounding REST ChIP-seq peaks for the activated genes sequences and 237 TF (14 REST motifs)
motifs for the repressed genes sequences. Top places in the motifs ranking for the REST activated genes were occupied by the KAISO motifs, characteristic for the ZBTB33
transcription factor. (Fig. 1)

• Motifs characteristic for activated (n = 21) and repressed (n = 56) genes clustered separately. (Fig. 2)
• Analysis of the nucleotide sequences of the identified motifs showed that they significantly differed between REST and ZBTB33, meaning that the co-occurrence of these

TF motifs within the examined sequences was not due to sequence similarity. (Fig.3a)
• We observed that in the REST activated genes, KAISO motifs were significantly more frequent in the proximity to the peak summits than in the rest of the examined 200bp

sequence. (Fig. 3b)
• ZBTB33 motifs occurred with higher frequency and lower q-value in the REST activated genes, while the majority of REST motifs were within the repressed genes. (Fig. 4)
• These results may suggest that while the main REST role may be repressive, its role within the activated genes promoters can be at least co-dependent on ZBTB33.

For REST ChIP-seq peaks from U87 cell line we assigned their summits within the 200bp sequence around the summit (+/- 100bp), using open source bioinformatic tools.
For that purpose we used Position Weight Matrices (PWMs) of TF motifs from HOCOMOCO[1] database and 14 additional REST PWMs, mainly from ENCODE[2].
The search of TF motifs was performed using PWMEnrich[3] Bioconductor R package. To identify specific transcription factor binding sites with the corresponding q-values,
we used online FIMO[4] tool from MEME Suite 5.0.5. Additionally, peaks were assigned to gene promoters and based on TCGA glioma RNA-seq and in-house REST ChIP-seq
data it was specified whether REST represses or activates the expression of the particular genes based on the correlation results, negative or positive, respectively.

MATERIALS AND METHODS

Fig. 2 Clustering of TF motifs characteristic for REST activated genes,
REST repressed genes and common motifs based on DNA sequences.

Fig. 1 Ranking of TOP15 motifs for REST activated genes.

RESULTS

Fig. 4 Q-value and frequency relation for selected KAISO and REST motif for REST ChIP-seq peaks for
activated and repressed genes.

Fig. 3 REST and KAISO motifs (a) clustering based on DNA sequences (b) occurrence dependent from
the localization in the activated genes sequences.

(a) (b)
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Fig.4.  Mean GC content was 46 % for HGG and 54 % for PA  – difference 
was statiscally important (HGG n = 124, PA n = 114, Mann-Whitney U test: 
p-value = 4.292992e-17, W = 11528)

Conclusions

• HGG-specific enhancers had lower frequency of guanine 
and cytosine nucleotides then PA-specific enhancers  and 
higher global DNA methylation level.

• Methylation pattern of 14 TF motifs was confirmed to be 
consequently hypermethylated in HGG compared to PA 
samples and all of this motifs were found in at least one 
ehnancer with differentially expressed target gene.

• These results indicate specific TF motifs whose methylation 
may have an influence on regulation of TG expression 
and therefore contribute to gliomagenesis.

Experiment Type of data
Analysis 

maperformed on 
data

Chip-seq for H3K27ac
Genome coordinates of

 active enhancers
 Motif search

Bisulphite seq
Methylation level per single 

cytosine
(~3.5 mln sites per sample)

DM cytosines calling

RNA-seq Read counts per gene DE genes calling 

Results

Aim
●To study molecular differences in enhancers of different 
glioma grades: pilocytic astrocytoma and Higher Grade 
Glioma. 

●To detect specific methylation sites in Transcription Factor 
motifs responsible for changes of its transcription factors 
binding affinity and as a result - changes of target gene 
expression.

Materials & Methods

Tab.1. Analysis performed on three layers of biological information for the set 
of 7 PA and 10 HGG samples.

Fig.2. Schematic representation of enhancers methylation levels 
comparisones.

Fig.1. Schematic representation of target gene expression regulation via 
enhancer.

MOTIF ENHANCER

TARGET GENE
TF

DNA

Fig.3.  Number of CpG sites devided into three ranges of methylation 
level.There are more hypermethylated sites in HGG-spec. Enhancers 
comparing to PA-spec. enhancers (X-squared = 1309.9, df = 1, p-value < 
2.2e-16).

Fig.5. PA: 92 enhancers targeting 161 TG (32 DE). HGG: 84 enhancers 
targeting 120 TG (22 DE).

Fig.6. a) Selected 14 TF motifs & their nucleotide sequence; b) Graph 
of 13 TFs together with additional proteins they interact with.
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Abstract
Although human genome is widely studied since many years its complexity remains
not fully understood. One of the mechanisms that stands for that is alternative splicing,
which is a process of joining exons in multiple ways, so that novel mRNA and, in fact,
novel proteins are produced. Currently we are not fully aware of all of the splicing
events that might be present in a given genome. One of the tools that provides the
possibility to investigate that is Spladder. It builds an augmented splicing graph, based
on current annotation and than expands it with novel events. Currently Spladder
supports detecting six different types of such events. We used Spladder software on
data from SEQC consortium project [1][2].
We investigated 3 samples ( A- mixture of 10 different cancer cell lines, B- healthy
individual and C- A and B samples mixed in 1:1 ratio) run on different RNA targeting
panels, as well as on whole transcriptome sequencing data obtained with two
protocols- ribo-depletion and polyA selection. Preliminary results show that there is a
fraction of genes containing novel events, which seems to be cancer or sample
specific, but majority is the same irrespective of sample. It seems that the current gene
model can be extended by this data. Spladder also revealed that the fraction of intron
retention events is higher for whole transcriptome sequencing data than for targeted
approach and is higher for ribo-depletion protocol than for polyA selection, what is
expected after comparing sample processing and library preparation for these
approaches.
These results show that there is still a lot of work ahead of us to fully describe our
genome but at the same time that Spladder might be a good tool, not only for that
challenge, but also for others like detecting cancer specific events.
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Novel alternative splicing events detection in 
human genome with Spladder

Results

Conclusions
• We were able to detect all splicing events in our
data, among which the most prevalent were
exon skip and intron retention, whereas the
least- mutually exclusive exons.

• Although there were some events, which seems
to be cancer or sample specific, majority is
common- this suggest that current gene model
might be expanded.

• Intron retention events occur more often in
whole transcriptome sequencing data, than in
any of the panels and also often in ribo-
depletion than in polyA. This reflects
differences in library preparation for these
approaches.

• WTS with polyA protocol detects more events
than riboZero.
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