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Currently, one of the fastest growing DNA sequencing technologies is
nanopore sequencing. One of the key stages of processing sequencer
data is the basecalling process, which from the input sequence of
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#1 MATERIALS

Whole-genome DNA sequence of four traditional Danish
Red Dairy Cattle bulls:

1) The training data set—three animals,

2) The validation data set—the fourth animal.
Correct SNPs (concordant WGS—Chip):

1) Training data set: 2 227 995 SNPs,

2) Validation data set: 749 506 SNPs.
Incorrect SNPs (discordant WGS—Chip):

1) Training data set: 46 920 SNPs,

2) Validation data set: 14 940 SNPs.
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Deep learning algorithms for the imbalanced

classification of correct and incorrect SNP genotypes

from WGS pipelines
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1) Naive algorithm \
2) Weighted algorithm

3) Oversampled algorithm;
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1) The estimated cutoff points for each
model by:
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#3 RESULTS
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Classification of validation data by the algorithms, based
on the cutoftf thresholds for the Fi1 or SUMSS metrics.
1) True positive (TP)—an incorrect SNP classified as incor-
rect,

2) False negative (FN)—an incorrect SNP classified as cor-

rect,
3) True negative (TN)—a correct SNP classified as correct,

4) False positive (FP)—a correct SNP classified as incorrect,
5) Fi—values of the F1 metric.



DNA sequence features underlying large-scale duplications and deletions in humans
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ODbjective Conclusions

» Deletions and sequences upstream of Copy Number Variants have '
low sequence complexity. !
- Large proportion of CNVs overlap with introns. i

Characterizing regions of human genome
that are susceptible to formation of

Copy Number Variants.
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] GC-pairs content ' » Database of 1000 Genomes Project

________________________________________________________________ !

Duplications Deletions Randomised duplications Randomised deletions * 9 5_367 dupllcated and 33 181 deleted
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__ » 100 bp-long sequences flanking CNVSs

- Random regions

| e Segences extracted from reference genome
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transcript feature
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» Unknown nucleotide contents (14 CNV5s)
» Guanine-Cytosine pairs content
» Sequence complexity -> sDust software

 CNV-related and randomised regions
comparison > Wilcoxon test
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