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G-quadruplexes (G4s) are structural
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upon one another. Four guanines in a pseudo-planar e ting C b ki Center, Poland
arrangement, connected by hydrogen bonds, form a tetrad. D) FOZNan SUpercomputing an EIWOrKking L enter, rrolan

G4s are involved in many biological processes, for example,
transcription regulation and genome stabilization. Thus, they
constitute an interesting target of novel therapeutic designs.
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Quadruplex structures

The secondary structure of tetrad T can 111
be represented as cyclic graph G = (V,E), where Eammé

|VI=|E|=4, each veV represents one nucleotide from \ / ONZ

the tetrad, every ecE corresponds to a hydrogen-bonding

interaction between respective nucleotides. If we placed the 0.17

Vertices of G at equal distances on a circle clockwise, in the 0.34

order imposed by the sequence, we’d see that graph takes the shape
of a square (O-shaped), a bow tie (N-shaped), or an hourglass

(Z-shaped). This observation made us distinguish 3 groups of . .

’ tetrads and define their ONZ taxo%lomy: "4 ONZ ClaSSlflcathn Rise

Let T denote a tetrad build of N,, N,, N;, N, nucleotides. .
We define ONZ classes: We can annotate the tetrad according to the

+ Class O if T = {(N,,N,), (N,,Ns), (N5, N,), (N,N,)}, interaction arrangement. If the first nucleobase 6.79
» Class N if T = {(N,,N,), (N,,N,), (N,,N,), (N, N,)}, binds with the next one along the Watson-Crick

* Class Z if T = {(N,N;), (N;,N,), (N,,N,), (N,N,)}. edge, the tetrad is tagged positive (+), Analysed
otherwise, it is tagged negative (-). structure: 6TC8
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ElTetrado ' ' Quadruplex resources

ElTetrado identifies and describes tetrads
and quadruplexes in the 3D structures of nucleic
acids, by searching for G-based and non-G-based . | )

motifs. It allocates tetrads and quadruplexes to ONZ Thus, every class in ONZ is divided into : = e
classes according to their 2D structure topology, calculates two subcategories: O+, O-, N+, N-, Z+, Z-.
strand direction, planarity deviation, rise and twist parameters.
The program also outputs the graphical representation of the
2D structure (top-down arc diagram) and its dot-bracket
encoding in a two-line format—both designed specially

to handle tetrads and quadruplexes.

G4-related bioinformatics resources

S ——— Quadruplex resources
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2 With the growing interest in quadruplexes, | s
4234 e computer programs for their analysis began to
O 8 7 B appear. Most of them rely solely on a sequence and
ONZM class coverage parse it to find a predefined G4 motif. This goes hand in
by unimolecular quadruplexes hand with creation of G4-related databases that primarily
collect information about sequences with the ability to form
quadruplexes. We distinguished the following subsets of
resources: databases, tools to predict putative quadru-
plex sequences, tools to predict secondary structure

ONQU ADRO with quadruplex motits, and tools to analyze Quadruplex resources

and visualize quadruplex structures.

ONQUADRO database collects tetrads Analysis of G4-dedicated programs
and quadruplexes found in PDB-deposited

structures of nucleic acids.
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Introduction Angular representation

Computational methods for the 3D structure prediction allow for prototyping
the shape of RNA, yet some of its fragments require more attention and
manual or semi-automatic adjustment. Among them are multibranched loops
(n-way junctions) - hard to predict structural motifs that significantly impact
the structure of the whole molecule.

e Euler angles (X, Y, Z) — three angles describing the rotation
around axes in 3D that are required to align two
neighbouring connecting helices.

In this work, we created the RNAloops database that collects structural data of
RNA n-way junctions. The novelty in our tool is the loop description that
contains, i.a., a set of angles (Euler and planar) to determine spatial
relationship between outgoing helices.

Data analysis performed with the RNAloops contents showed that every eight
RNA contain n-way junctions; in some structures we found even >100 of them
per molecule. We believe that data collected in RNAloops can be used to
improve the accuracy of in silico modeling of RNA 3D structures.

e Planar angle — a single angle describing angle between two
neighbouring connecting helices. Figure below visualizes
example of the planar angle.

/ \ i Find all new 3D RNA structures ik
stored in PDB
About RNAloops “PDB
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RNAloops stores the information r - )
xtract secondary structures
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3D structures deposited in the
PrOtEin Data Bank- The StOrEd data /For each considered 3D RNA structure identify all n-way junctions (n>23\
include  sequence, secondary \/@
structure, tertiary structure, one ! 3/7 A y RESUltS
planar, and three Euler angles that
. . . /7 ) . . . .

describe the relationship between Fompte! Bulennd planat anges The RNAloops database stores information of 11 984 junctions
stems coming out of the loop. % from 510 RNA structures, as of 3-Nov-2020. It is the result of
The database is automatically \ | J processing 2 418 RNA structures from the RCSB PDB repository.
updated every Sunday. Newly — —
deposited RNA 3D structures are — — ‘ » ‘
aUtomatically downloaded from Store all data in relational DB
the RCSB PDB repository. For every — — 85% o
downloaded RNA, its secondary , Y =

_ . RNAloops Ul 2%
structure is extracted using E——
RNApdbee algorithm and encoded :
in extended dot_bracket nOtatiOn. Q B RNAS without n-way junctions M Structures with 1 n-way junction

g Structures with 2-5 n-way junction Structures with 6-25 n-way junction

All n-way junctions are identified
in each RNA, based on its
secondary structure processing.
Planar angle and Euler angles are
computed for every pair of
outgoing helices and attached to

Qdescription of the muItiIoop.J
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We identified junctions with 3-17 outgoing helices. Out of
these 11 984 junctions, over 50% were 3-way junctions (6 547),
about 30% were 4-way junctions, 13% - 5-way junctions.

Example n-way junctions in RNAloops
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Introduction J ( Workflow J
A comparison of tertiary structure between several molecules 1s very
important in order to understand function of specific RNA molecules and Obtaining 2D structures of original GGAGUUCACCGAGGCCACGCGGAG
interactions between them. With it we can find motifs, that are crucial to molecules UACGAUCGAGGGUACAGUGAAUU
identify and recognize to the role of newly-found molecules or extend our RNApdbee:
knowledge about known RNA chains, which are still not fully studied. But in R(((HE{((E(((m) ) }))AB)))))
order to make a comparison, we need a measure, that is reliable and can be RNAsubopt:
used to a wide variety of molecules, with as low number of limitations as Creating a set of 2D decoy CCCCCCCC e ))- -0 900))
possible. structures (R {(E(((m) )W) )
(A (S 2)BB))))
Our inspiration and objectives J (CCCCCE G GGG 400)000)-)000)

In order to overcome this problem, a group of scientists from University of
North Carolina took a closer look at root-mean-square deviation (RMSD).
Their work was described 1n article “On the significance of an RNA tertiary
structure prediction”!, written in 2010. They have discovered, that RMSD is
highly dependant on the size of the molecule and 1n order to make 1t more
reliable, they proposed usage of prediction significance (P-value). This value
allows to evaluate, if the given prediction is better than one expected by
chance for molecule of that size.

But there are more measures, that can be used to compare tertiary structures
than just RMSD. In our research we are concentrating on mean of the circular
quantities (MCQ), which 1s an approach used in the MCQ4Structures tool. It
1s described 1n “MCQ4Structures to compute similarity of molecule
structures”? article, written in 2014 by the group of scientists from Poznan
University of Technology. We have decided to take a closer look on this
measurement 1n order to make it size-independant.

Creating a 3D models

14 [1XJR_suboptl0 2 20.285790544053135 21.378189029510363 20.227132470704397 19439

15 [1XJR

Measuring distances between 16 |1XJR

Methodology

suboptl0_3 |19.958034707850434 21.51726594809743 20.657010082418 19.951;
suboptl0 4 20.608053134322468 21.58369299344332 20.76758044626844 |20.544

J 13 [1XJR_suboptl0 1 21.17825724883379 22.0215367833697 |21.19205987001956 20.178

17 |1XJR_suboptl0 5 21.754612138332728 22.639471515034714 21 899645588963665 21.955
suboptl0 6 19.47368269405073 21.515487150978128 20.303748856495712 19.765
suboptl0 7 20.562551584740863 21.285180993736148 21.170325317029157 20.917

suboptl0 8 20.90369783609336 |22.06117832390136 |20.920245866605626 20.986

18 [1XJR

In order to achieve our objectives, we decided to use the same molecules, that structures 1 1008
were used 1n research on RMSD, so our work can be more comparable to one e
done by scientists from University of North Carolina. Than we had to create a

set of decoy structures, which would later be used in comparison with the

original molecule. To make those we have used RNAsubopt tool from

ViennaRNA package, which gave us a set of 2D predictions. Then we took

received structures and the original ones, retrieved from PDB site, and loaded

them into RNAComposer tool, which 1s used in prediction of 3D RNA

structures. As a result of this, we have received a set of 3D configuration,

which we could compare with each other. In order to do this, we have used
previously mentioned MCQ4Structures tool.

30000 A

Creating a histogram of given

distances and comparing it to the
Results J normal distribution

10000 -

At this moment we have created histograms for distances between our decoy
structures. Then we tested our score with normality tests, but in opposition to
our assumptions, the data appeared to be not normally distributed. What’s
even more 1nteresting, for some molecules distribution appeared to be ( References J
bimodal. We will have to take a closer look at this case.

We still have much more to do 1n this matter. Our research 1s far from the
end, but i1t’s going in the right direction and we hope to present final answer
to presented problem.
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INTRODUCTION

The functions of RNA molecules are mainly determined by their secondary structures. These functions can
also be predicted using bioinformatic tools that enable the alignment of multiple RNAs to determine
functional domains and/or classify RNA molecules into RNA families. Here, we introduce an extremely fast
Python-based tool called RNAlign2D. This tool is dedicated to multiple alignment of RNA molecules with
known secondary structures. It converts RNA sequences to pseudo-amino acid sequences that incorporate
structural information and uses a customizable scoring matrix to align these RNA molecules using the
multiple protein sequence alignment tool MUSCLE. This approach can be customized for virtually all
protein aligners. RNAIign2D is freely available from https://github.com/tomaszwozniakihg/rnalign2d .

MATERIALS AND METHODS

RNAIIign2D is a command line tool written as a Python script that works in UNIX-based operation systems.
To compare RNAlign2D with other tools that can use fixed 2D structure for multiple RNA alignment
LocARNA and CARNA, we used 2 available benchmark datasets: BraliBase 2.1 and RNAStralign.In the next
step, the sum-of-pairs-scores (SPSs) and positive predictive value (PPVs) were calculated for each
alignment. Alignment time was also measured for subset of datasets from RNAStralign benchmark.

RESULTS

A = > B scoring matrix
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Figure 1. Schematic representation of the RNAIlign2D workflow. A. Basic concept of RNA sequence-structure Figure 3. Comparison of alignment performance times for
conversion to a pseudo-amino acid sequence. B. Conversion of 20 RNA sequence-structure elements to pseudo- RNAlign2D, CARNA and LocARNA presented as a graph
amino acids and their scores (left) and the default scoring matrix (right). C. Block diagram of the RNAIlign2D with standard errors indicated.
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The correlation coefficients are shown at the top of each
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and 20 homologous sequences from the entire RNAStralign benchmark dataset with RNAlign2D, CARNA and
LocARNA. **** p-value < 0.0001; *** p-value < 0.001; ** p-value < 0.01; * p-value < 0.05.
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Mining biomacromolecular interactions
with the BioShell package
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3QFC_B RYESGDHVAVYPANDSALVNQLGKILGADLDVVMSLNNLDEESNKKHPFP

1J9Z A CPTTYRTALTYYLDITNPPRTNVLYELAQYASEPSEQEHLHKMASSSGEG

1JA0 B CPTTYRTALTYYLDITNPPRTNVLYELAQYASEPSEQEHLHKMASSSGEG

1J9Z B CPTTYRTALTYYLDITNPPRTNVLYELAQYASEPSEQEHLHKMASSSGEG I N T RO D U CTI O N

1JA0 A CPTTYRTALTYYLDITNPPRTNVLYELAQYASEPSEQEHLHKMASSSGEG

1JA1 A CPTTYRTALTYYLDITNPPRTNVLYELAQYASEPSEQEHLHKMASSSGEG

1JA1 B CPTTYRTALTYYLDITNPPRTNVLYELAQYASEPSEQEHLHKMASSSGEG

3ES9 A CPTTYRTALTYYLDITNPPRTNVLYELAQYASEPSEQEHLHKMASSSGEG . . ; .
3ES9 B CPTTYRTALTYYLDITNPPRTNVLYELAQYASEPSEQEHLHKMASSSGEG M O | eC u I a r' m O d e | I | n g | S a te C h n | q u e CO m m O n I y u Se d | n

30JX A TPTTYRTALTYYLDITNPPRTNVLYELAQYASEPSEQEHLHKMASSSGEG
6NJR A TPTTYRTALTYYLDITNPPRTNVLYELAQYASEPSEQEHLHKMASSSGEG

o 2 mrmmmeaespnaasia:  deciphering lite on a molecular level. Outputs from these
30FC B CPTSYRTALTYYLDITNPPRTNVLYELAQYASEPSEQELLRKMASSSGEG Si m u I ati O n S u S u a I Iy CO m p ri Se 3 D St ru Ctu res a n d th ei r
1J9Z A KELYLSWVVEARRHILAILQDYPSLRPPIDHLCELLPRLQARYYSIASSS - - . .

e energies, evaluated in a given force field. These tools

1JA0 A KELYLSWVVEARRHILAILQDYPSLRPPIDHLCELLPRLQARYYSIASSS

1JA1 A KELYLSWVVEARRHILAILQDYPSLRPPIDHLCELLPRLQARYYAIASSS h I y p I h th b I I t t
1JA1 B KELYLSWVVEARRHILAILQDYPSLRPPIDHLCELLPRLQARYYAIASSS OW eve r ra re ex a I n OW e I O m O e C u e S I n e ra C .
3ES9 A KELYLSWVVEARRHILAILQDYPSLRPPIDHLCELLPRLQARYYSIASSS
3ES9 B KELYLSWVVEARRHILAILQDYPSLRPPIDHLCELLPRLQARYYSIASSS
300X A KELYLSWVVEARRHILAILQDYPSLRPPIDHLLELLPRLQARYYSIASSS

6NJR A KELYLSWVVEARRHILAILQDYPSLRPPIDHLLELLPRLQARYYSIASSS

GNTR B KELYLSHVVEARRHILATLODYPSLRPP IDHLLELLPRLOARYISTASSS Thirteen close homologs from CYP family which bind NAP
DS LRI CELLPREQRSTRSSS molecule were analysed as an example. Only interactions
1720 B KVHPNSVHICAVAVEYEAKSGRVNKGVATSWLRAKEPA---GGRALVEMF betwee N I |g an d an d a p rOte| N were ta ke N | N tO aCCoun t .

1J9Z B KVHPNSVHICAVAVEYEAKSGRVNKGVATSWLRAKEPA----GRALVPMF
1JA0 A KVHPNSVHICAVAVEYEAKSGRVNKGVATSWLRAKEP======-~ ALVPMF
1JA1 A KVHPNSVHICAVAVEYEAKSGRVNKGVATSWLRAKEPAGENGGRALVPMF
1JA1 B KVHPNSVHICAVAVEYEAKSGRVNKGVATSWLRAKEPAGENGGRALVPMF
3ES9 A KVHPNSVHICAVAVEYEAKSGRVNKGVATSWLRAKEP====== RALVPMF
3ES9 B KVHPNSVHICAVAVEYEAKSGRVNKGVATSWLRAKEP====== RALVPMF STAC KI N G I N T E RACTI O N S
30JX A KVHPNSVHITAVAVEYEAKSGRVNKGVATSWLRAKEPA===== RALVPMF

6NJR A KVHPNSVHITAVAVEYEAKSGRVNKGVATSWLRAKEPA----GRALVPMF

o In the table there are all stacking interactions between NAP

1J9Z A VRKSQFRLPFKSTTPVIMVG
1JA0 B VRKSQFRLPFKSTTPVIMVGP
1J9Z B VRKSQFRLPFKSTTPVIMVGP
1JA0 A VRKSQFRLPFKSTTPVIMVGP
1JA1 A VRKSQFRLPFKSTTPVIMVG
1JA1 B VRKSQFRLPFKSTTPVIMVGP

B1APFUGE 1QERAVLREQGKEVGETLL and a protein. It turns out that in all cases it is the same

GIAPFMGFIQERAWLREQGKEVGETLL

s amino acid TYR604 (in 3QFC it is TYR 607). Geometry is

PDB code | 1st residue | 2nd residue
GIAPFMGFIQERAWLREQGKEVGETLL

TG TAPEMGE LOERANLREQUKEVGETLL presented on a figure. Thirteen proteins was superimposed to 1JAO NAP852 B Y604B  3.751 166.402 1.519 3.430

GIAPFMGFIQERAWLREQGKEVGETLL

et i s have NAP in the same place so the differences between 1JAO NAP752 A Y604 A 3698 167.154 0997 3.561

IAPFMGFIQERAWLREQGKEVGETLL

e homologs can be easily seen.

3ES9 A VRKSQFRLPFKSTTPVIMVG
3ES9 B VRKSQFRLPFKSTTPVIMVG
30JX A VCKSQFRLPFKSTTPVIMVGP
6NJR A VRKSQFRLPFKSTTPVIMVGP
6NJR B VRKSQFRLPFKSTTPVIMVG
3QFC_A VRKSQFRLPFKATTPVIMVGP
3QFC_B VRKSQFRLPFKATTPVIMVGP

1JAT NAP1852 B Y604 B 3.884 13.503 1.600 3.539

1J9Z A YYG SDEDYLYREELARFHKDGALTQLNVAFSREQAHKVYVQHLLKRD

1JAO:B YYG SDEDYLYREELARFHKDGALTQLNVAFSREQAHIVYVQHLLKRD

AiiEessidae s VAN DER WAALS INTERACTIONS el il et it
lJAl:B YYG SDEDYLYREELARFHKDGALTQLNVAFSREQAHKVYVQHLLKRD _ _ _

e s ok L SR L Multiple sequence alignment was created using MAFT program 3ES9 | NAP753A  YB04A 4269 55.074 1.139 4.114
Qﬁ §§§§§$§§xgg and coloured by Van der Waals interactions. Color scale was 3ES9 NAP753 B Y604B  4.196 32.883 0.896 4.100
T S used to show the distances between interacting residues.

30JX NAP753 A Y604 A 3.930 12.828 1.702 3.542

1J9Z A REHLWKLIHEGGAHIY
1JA0 B REHLWKLIHEGGAHIY :

1J9Z B REHLWKLIHEGGAHIYVCGDAR
1JA0 A REHLWKLIHEGGAHIYVCGDRA
1JA1 A REHLWKLIHEGGAHIYVAGDZ
1JA1 B REHLWKLIHEGGAHIYVAGDAR

3ES9 A REHLWKLIHEGGAHIYVCGRPARNMAKDVONTFYDIVAEFGPMEHTQAVDY
3ES9 B REHLWKLIHEGGAHIYVCGDAR

JO5K REHLWKL THEGGA T VCCOARMAKDVONTF TDTVASF GPUEATAAVDY Hydrogens was added to the structures with reduce' program. 1J9Z | NAP852B  Y604B  3.711  6.020 1.296 3.477

6NJR A REHLWKLIHEGGAHIY KDVONTFYDIVAEFGPMEHTQAVDY

PP R i W e Residues that creates hydrogen bonds with NAP was colored 6NJR NAP703A  Y604A  3.751 162.636 0.884 3.645

3QFC_A REHLWKLI-EGGAHIYVCGDAR
3QFC_B REHLWKLI-EGGAHIYVCGDAR ONTFYDIVAELGAMEHAQAVDY . .
B orange on multiple sequence alignment. 6NJR NAP703 B Y604 B 3.961 164.295 1.076 3.812

cﬂ
1JA1 A VKKLMTKGRYSLNVWS
1JA1 B VKKLMTKGRYSLNVWI
3ES9 A VKKLMTKGRYSLDVWS
3ES9 B VKKLMTKGRYSLDVWS
30JX A VKKLMTKGRYSL
6NJR A VKKLMTKGRYSL
6NJR B VKKLMTKGRYSL

3QFC A IKKLMTKGRYSLﬁ

FORCD HTLHTHCRISEOM | | | | Macnar, J.M.; Szulc, N.A.; Krys, 1.D.; Badaczewska-Dawid, A.E.; Gront, D.
grahics prepared with VisuaLife Pack- 1. Word, et al.(1999) "Asparagine and glutamine: using hydrogen atom contacts in BioShell 3.0: Library for Processing Structural Biology Data. Biomolecules
age https://visualife.readthedocs.io the choice of sidechain amide orientation” J. Mol. Biol. 285, 1735-1747. 2020, 10, 461.

AKDVONTFYDIVAEFGPMEHTQAVDY
AKDVONTFYDIVAEFGPMEHTQAVDY
AKDVONTFYDIVAEFGPMEHTQAVDY
AKDVONTFYDIVAEFGPMEHTQAVDY

ST SO HYDROGEN BOND INTERACTIONS

1J9Z NAP752 A Y604 A 3.644 7.551 0.828 3.549

1J9Z A VKKLMTKGRYSL
1JA0 B VKKLMTKGRYSL
1J9Z B VKKLMTKGRYSLDV
1JA0 A VKKLMTKGRYSLDV

Funding: This research was funded by the 3QFC NAP753 A Y607 A 3.865 10.405 1.604 3.516

é‘! BIOSHEI_I_ National Science Centre (Poland) Grant No. 3QFC NAP753 B Y607 B 3.725 12.987 1.099 3.559
2018/29/B/ST6/01989.
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Abstract
Nucleic acids are becoming increasingly attractive targets for

potential drugs. Since most targets of small molecule drugs
are proteins, the portfolio of nucleic acids-oriented
bioinformatics tools is limited. Here we present fingeRNALt -
a novel and open-source software for calculation of
Structural Interactions Fingerprints (SIFs) for nucleic
acid - ligand complexes. SIFs translate information about
3D interactions in a target-ligand complex into a string, where
the respective bit in the fingerprint is e.g. set to 1 in case of
detecting particular interaction, and to O otherwise. By using
SIFs, the interactions are represented in a unified fashion,
thus allowing for easy analysis and comparison, as they
provide a full picture of all interactions within the complex.

Background

e Many nucleic acids are disease-associated with ability to
adapt a tertiary structure hence constituting promising
targets for drugs.

e Structural Interactions Fingerprints (SIFs) represent
interactions within a complex in a form of a binary or a

hologram string, a convenient input to computational
ana |yses _ Nucleic acid
. o 1 0 1 0 0 1
\ b o
0 “ ?é *8- Pi Stacking
KCSO \ %;ﬁ Pi - Anion
fh %HO %% E E Pi - Cation
O\\P 7 % , % "3 Cation - Anion
o Noo/— N E g Halogen bond
\ Ligand ~ Hydrogen bond
e No freely available tool to calculate SIFs for nucleic acid -

ligand complexes.

Overview

e fingeRNAt is a Python 3.x program which calculates SIFs
Ig Comp

e Input/Output

Requires (1) RNA/DNA structure in pdb/mol2 format and
(i1) ligands’ structures in sdf format.

The output is a SIF calculated for each complex saved
to separate row of a tab-separated file.

e SlIFs types
—— —

S ; ' v
S .':-Lv-i 25 7 R
p B NG s _W.; By i ..<.»;
ess \ \

Bit vector Bit vector Bit vector Hologram
Presence (1) or absence (0) Presence (1) or absence (0) Presence (1) or absence (0) Given interaction type count
of any contact with a given of any contact with a given of a given interaction type for a given residue

residue fragment of a given residue with a given residue
.01 1... ...000010111... ..110010. .. ..120010. ..

Pi Stacking
Sugar Pi - Anion
Nucleobase Pi - Cation

Phosphate group Cation - Anion

Halogen bond
Hydrogen bond

fingeRNAt applications
What are the non-covalent interactions statistics in RNA
- ligands complexes?

Dataset
Non-redundant complexes of RNA with small molecule

ligands.

Calculation of interactions

Non-covalent interactions in all the complexes from the
dataset were detected and converted to SIFs using
fingeRNAt. SIFs were used to calculate interactions
statistics.

Hyarogen eoncs [ MMM '>* Hydrogen bonds are most

cation-Anion || 511 frequent (over 65%), but
Pi-Stacking [l 109 ionic interactions play
Pi-Cation [J|78 second most important
Pi-Anion | 19 role, constituting almost

one quarter of all
interactions.

Halogen Bonds ‘4

0 20 40 60
Percentage of all detected interactions

fingeRNAt applications
Can interaction patterns be used to discriminate between
active and inactive compounds?

// o )\ e
< A ¢
XS s
,7 A /’i\ VAL 2 7 A
g ) N
€2 Wak .
>CW | ek
// / ’l@‘\ I n S ]
( / ’ (v)
/50PN a . 1478 (98,0%)
D, . £ ' N
\‘\» : ‘\"‘
= R i »9 v
. I oy
N /4 A
\- 8 W )\ QY
DB en >

Active ¢ Inactive

Dataset
Target: HIV TAR

Calculation of interactions

Docking was performed using rDock. Non-covalent inter-
actions in all the complexes were detected and converted
to SIFs using fingeRNAt. SIFs were used to calculate
average number of contacts for each interaction.

residue nucleotide interaction type active inactive difference p-value

21 G  Pi-Cation 0.000 0.011  -0.011 0.00 :
21 G  Pi-Anion 0.000 0.004  -0.004 0.01 Active and
22 A HalogenBonds 0.000 0.003  -0.003  0.03 inactive ||gands
22 A Pi-Anion 0.000 0.011  -0.011 0.00 .
23 U Hydrogen Bonds 1.000 0.963 0.037 0.00 h ave d Iffe re nt
23 U Halogen Bonds 0.000  0.009  -0.009 0.00 bl nd | ng p atte rns
23 U  Cation-Anion 0.000 0.007  -0.007 0.00 ) _
23 U  Pi-Anion 0.000 0.003  -0.003 0.03 and this variance
26 G  HydrogenBonds 1.000 0952  0.048 0.00 IF -
yereg may be utilized in
26 G  Pi-Anion 0.000 0.012  -0.012 0.00 _
27 A HalogenBonds 0.000 0009  -0009  0.00 rational d rug
27 A Pi-Anion 0.000 0.024  -0.024 0.00 -
design.
39 C Halogen Bonds  0.000 0.012 -0.012 0.00
39 C  Pi-Anion 0.000 0.004  -0.004 0.01
40 U  Pi-Anion 0.000 0.007  -0.007 0.00

Code availability Y o
github.com/n-szulc/fingeRNAt @ J.Qf . E
References T = 5],;5"'!- XY,
Deng, Chuaqui, Singh, J. Med. Chem. 2004, 47(2), 337-344. -, v

Salentin et al., Nucleic Acids Res. 2015, 43(W1), W443-\W447.
O’Boyle et al., J Cheminform. 2011, 3(1), 33.
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Binary genome maps assembly

Binary representation

474 1118 238 703 149 85 635 286
c

58 932 1650 1888 2591 27402825 3460 3746

d

10000100000000001010000001011000001010000

Representation of consensus genome maps and single restriction maps
[rmaps] are similar. It is as ordered set of distances between markers or
set of marker positions relative to beginning of genome fragment or
chromosome. In our new algorithm we propose a new representation
based on quantization and binary sequences. Each position in binary
seguence represents constant length genome fragment called quant. 1 in
the sequence indicates at least one marker present in quant, 0 indicates
no markers. Different optical maps representations are visualised above,
where:

a. Is restricted genome with red markers,

b. I1s distances between markers,

C. IS set of positions,

d. i1s binary genome map

Overlap algorithm

1: function FINDLEFTALIGNMENT(ref, aligned)
2 maxShi ft < MINLEN(ref, aligned)
> could be adjusted e. g. to be haltf of smaller rmap
bestAlign + 1 > indicates differnce, 1 means all diffrent bits
bestShift < 0
for shift € {1,...,maxShift} do
test < aligned < shi ft
result < test XOR ref
TRUNCATELONGER(test, ref)
if COUNT(result) / LEN(result) < bestAlign then
> it’s better alignment
10: best Align < COUNT(result) / LEN(result)

11: bestShift < shift
return bestSha ft

© 0 N O U A W

Aligning 2 diffrent maps is possible with diffrent estimated distances
between map ends. For each combination of positioning of 2 maps only
overlaping part of both maps is taken into analysis. For each position of
overlaping part XOR operation is performed that is 1's means diffrence at
given position, 0's indicates conformation. Lastly number of differences
between maps is counted to determine maps similarity for given distance.
Alborithm above optimizes differenting part (line 9) but this could be
modified into any arbitrary quality function e.g. prefering very long
overlaps with a bit more mistakes over smaller overlaps.

E.Coli maps visualisation

E.Coli maps with coverage x15 generated in silico from reference genome using BspQ/ simulated enzyme.

E.Coll experiments and comparison with valouev et. al.

We performed experiments using simulated datasets from e.coli genome,
using BspQIl and BssSI enzymes. Both BGM and valouev et. al. algorithms
used the same set of maps in appropriate format. We measuered time
needed by algorithms to finish assembly.

enzyme = BspQI enzyme = BssSI

5_ |
wn V)]
Dy O
e )
S S Algorith
z S gorithm
s 5 e BGM
Ez_ E- valouev
§1 c—o g g S———————————8
C -

0_

2.5 5.0 7.5 10.0 12.5 15.0 20.0 25.0 30.0 35.0 40.0
genome coverage

2.5 5.0 7.5 10.0 12.5 15.0 20.0 25.0 30.0 35.0 40.0

genome coverage
Using only 7.5x coverage of e.coli genome and BspQl enzyme we were
able to obtain 1 contig. Larger contig was containing information about
whole genome. The exact accuracy is not measurable due to nature of
quantisation process as discussed above but very restriction site was
restored with some artifacts in areas of high marker density and minor
missplacement of single bit. In comparison valouev et. al. algorithms
needed at least 15x coverage.

To obtain 1 contig from e.coli genome maps created with simulated BssSI
enzyme we needed 10x coverage. In comparison valouev et. al.
algorithms did not produce any contig even with x40 coverage.

[1][2]

15 S S e e — S i 1§ S st e 1[I e 115 G I st | | 1 e s |
0 - 600 kbp

 3000-3600kbp

"~ 3600 - 4200 kbp

4200 - 4632 kbp

Visualisation of 1 BGM BspQl contig where : green color is used to
represent reference map with violet markers, contig is marked with blue

102
Enzyme used
0 —— BspQl
sl - BssSl
GE) 10°
= Algorithm
1071 7 —— valouev
S s BGM
102] 7

5 10 15 20 s 30 35 40
genome coverage

Comparison of running time. measurements were performed using single-
threaded version of BGM algorithm. Each value vas measured 5 times.

[1] Valouev A, Schwartz DC, Zhou S, Waterman MS. "An algorithm for assembly of ordered restriction maps from single DNA molecules" Proc Natl Acad Sci U S A. 2006 Oct 24;103(43)
[2] Valouev A, Li L, Liu YC, Schwartz DC, Yang Y, Zhang Y, Waterman MS. "Alignment of optical maps" | Comput Biol. 2006 Mar;13(2):442-62.
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Anew overlap graph method for DNAsequence
assembly
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Wojciechowski'*, Aleksandra Swiercz!*, Marta Kasprzak', Jacek Blazewicz'*

! Institute of Computing Science, Poznan University of Technology, Poznan, Poland
% Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland

Introduction

Reconstruction de novo of a genome sequence is a great challenge, largely due to computational difficulties connected with processing millions of reads
at once. ALGCA (ALgorithm for Genome Assembly) is a new method realizing this process and is based on the overlap-layout-consensus approach. The
approach consists of three phases: construction of the overlap graph, preparation of the graph for traversal and agreement of final sequences. It is generally
viewed as more accurate than the so-called de Bruijn graph approach, but much more demanding in the sense of time and memory. Several new ideas were
implemented in order to increase etficiency at each of the phases.

Overlap graph construction Quality of results

ALCA was tested on a few real data sets obtained for human, bacteria
M. parvicella, algae C. sorokiniana and nematode C. elegans. Results were
evaluated with the standard tool QUAST [1]. ALGA provides very good
results according to metrics such as genome coverage fraction, length of
resulting sequences and occurences of misassemblies.

In the first phase of the algorithm, the overlap graph is constructed. In order
to reduce memory usage, ALCA creates the reverse of that graph instead
and transposes it afterwards. By doing so, ALGA can efficiently recognize
and remove transitive edges during the graph creation phase.

AACGIGITGIGACCGCTC

GTGTTGTGACCGCTCAAA Genome statistics ALGA SGA sSOAPdenovo 2 MEGAHIT
e —— Genome fraction (%) 90.297 %_ 91.707
GTGACCGCTCAAATGATG Duplication ratio 1.009 1.018 1.04
St SRttt SRS R RS R e pah st Largest alignment 140 579 67 917 AT 254 453369 2
GTGACCGCTCAAAATTAC Total aligned length 27758/ 684 30550894 153 2658 682 524 2892 744 943
e MRG0 11 495 4481 2495
o eI 3636 1468 687
MASC 13 834 4753 3264
MNATS 6648 1813 1544
MNiGAS0 11 453 4477 2490
MNGATSD 3648 1452 s T
LS50 74 181 186 133 21 702
Lz 75 191 208 A86 999 B2 682
LASO Bf a2 172 243 216670
LATS 129 950 A28 400 A8 872
LizA50 74 402 186 503 25 104
Reverse ‘Jr“qulpliiilF’ !;||-53|F]||1| LGATS 192 6094 489 004 61 377
Misassemblies
# misassemblies 2230 3688 738
# relocations 1161 1747 397
# translocations 1034 1863 299
7 inversions 30 _ 43
# misassembled contigs 2090 3560 FO5
1 " 1 Misassembled contigs length 13097 797 6953 129 1447 334
The overlap graph needs to undergo a few simplification steps that Misassembled conuigs 130 S 1o
transform it to a state ready for the traversal and creation of contigs. # scaffold gap ext. mis. 0 0 0 0
. . . . # scaffold gap loc. mis. o o o 0
These steps include cutting short parallel paths by solving a variant of the # unaligned mis. contigs 1189 1079 339 238
minimum directed spanning tree problem in local subgraphs, trimming - T rianed contigs 17 60 _ 10 ass _
: Fully unaligned length 8777301 5297 029
branches and com pressing paths. # partially unaligned contigs 2031 1684 752 2067
Partially unaligned lkength 3193 085 2313 312 Q39 636 3325133

Comparison of several assemblers for a whole human genome data set

SR

Removing dispensable branches

Performance

Cutting short parallel paths. Red arcs do not Compressing paths

belong to the minimum directed spanning tree
and are removed from the graph

ALGA is implemented with the use of different parallelization schemes,
effective memory management and incorporation of cache-locality
improvement techniques.

Contig derivation

M. parvicella C. elegans C. sorokiniana H. sapiens

Each contig is represented by some path in the simplified graph. Starting
from a single edge, a path can be extended by appending some edges to
its beginning or its end. Path extension is affected by local properties of the
graph and connections between paired reads.

8280728 8815335 5?95554

ALGA resolves the short repeat k 54}?1324}5 ma 18397
problem by considering paired

reads during traversal 4585315 @

»@ﬂ

EEEESB

49 !
2245885 EEﬂSdﬂE

- 4633822 6849355 @ @
""—=
? -

Arrows of the same color form a path that corresponds to a final contig

ALGA

1,7
00:01:29

19,3
00:24:48

27,8
00:48:11

247.3
15:31:50

GRASShopPER

17,6
02:02:28

361,6
57:12:58

638,9
53:33:33

out of memory
> 750 GB

Velvet

9,3
00:08:52

21,0
02:05:00

107,6
14:42:04

out of memory
>750GB

SGA

0,3
00:11:47

3,3
02:33:15

7,7
09:54:32

43,5
98:58:49

SOAPdenovo2

2,5
00:02:13

7,3
00:27:02

16,3
01:21:05

269,3
15:46:12

MEGAHIT

0,8
00:02:38

6,1
00:31:59

18,9
04:30:26

87,6
15:43:34

SPAdes

10,6
00:26:50

14,4
12:14:42

49,2
22:22:05

out of memory
>400GB

Platanus

117,6
00:16:39

122,1
01:03:06

120,0
03:50:25

out of memory
> 750 GB

Time and memory usage of tested assemblers for data sets obtained for
M. parvicella, C. sorokiniana, C. elegans and H. sapiens
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BioShell software reduce an
overrepresentation of sequences,

IncCrease quality of a MSA,
pulld better sequence profile.

Automated approach for sequence
profile generation

Marcin Piwowar, Dominik Gront, Faculty of Chemistry, University of Warsaw

Number of sequences

B after PSI-BLAST
70000 | mmm after BioShell
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Results

The method has been tested and
validated on a nonredundant set
of sequences from HOMSTRAD and
UniRef. BioShell for the identity
parameter equal to 50% removes
up to 99% of all found sequences.
MSA is done with greater
accuracy, because profile will be
constructed from fewer, but more
significant sequences.

Conclusions

- BioShell makes a set of sequences
to be taken into account during MSA
less redundant

Protocol using BioShell with
external software generates
sequence  profile  with  more

biological information

Because of less number of
sequence, sequence profile is build
up to 40 times faster
- Human expert applying BioShell is
not forced to manually improve MSA

Applications will be tested on other
databases.
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Despite the recent progress in the
field, construction of a multiple
sequence alignment (MSA) still requires
a considerable effort from a human
expert. Automated methods can make
various errors, that often result from
an unfortunate selection of input
sequences, e.g. when set of these
sequences is redundant. In this
contribution | used tools from BioShell
package (ap_blast_nonredundant,
ap_filter_msa) to filter an input
sequence set and construct better MSA
in an iterative fashion.

Sequence profile




Introduction

Emergence of novel coronavirus SARS-CoV-2 had became a global threat in a blink of an eye. Many
research groups, coroporations and organizations had proposed sets of primers for RT-qPCR tech-
nology that ought to be reliable, primary source of diagnostic power all around the world. During
the course of pandemic, studies and reports had shown that nowt every proposed set of primers can
amplify the virus, thus false negative and false positive results had became a serious problem. Since
global lockdown hadn’t been handled properly in plethora of countries, evolution of SARS-CoV-2
had became region specific, which introduced mutations that altered performance of globally rec-
ommended primers. Our group inspired by diagnostic work of our collegues from Human Genome
Variation Research Group from Malopolska Centre of Biotechnology and in collaboration with Meta-
SUB consortium had addressed those problems by performing a set of in-silico experiments for the
evaluation of SARS-CoV-2 primers performance.

Those in-silico tests helped to establish what i1s the most recommended set of primers and their had
been put all together as a Python library we called pyprimer, which will be available as an open-
source solution applicable to benchmark performance of primers and to design them for PCR-family
laboratory techniques.

Data and Methods

Global dataset was obtained from GISAID repository, then filtered with strict criterion concerning
quality of sequences:

o Number of ambiguous nucleotides (”N”’) must be less than or equal to 5%

o No sequences with ambiguous nucleotides within primer bindning sites are allowed

o Metadata of sequences must be complete (or really easy to impute)

Regional Polish dataset was obtained from collection of sequences obtained in Matopolska Cen-
tre of Biotechnology by Human Genome Variation Research Group. Polish dataset hadn’t required
any filtering. Sequences of primer pairs were obtained from WHO and CDC websites.

Processing and analysis of data had been performed in following steps:

1. Multiple Sequence Alignment (for later construction of probability matrices)
2. Description of physical properties of sequences and primer pairs

3. Fuzzy matching of primer pairs with Levensthein distance set to zero

4. Filtering and selection of cannonical amplicons created by in-silico bindings

5. Evaluation of stability of primer pairs based on the Primer Pair Coverage metric

Fm Rm
PPC =— x — x (1 —
C =T = R X (1 —=CVm)
oV OKPWR,E&H)
m_,u<Fm,Rm)

Where:

PPC' - Primer Pair Coverage

F'm - Number of nucleotides that matched sequence in F primer
F'[ - Total length of F primer

Rm - Number of nucleotides that matched sequence in R primer
Rl - Total length of R primer

C'V'm - Coefficient of variation for matched regions

o - Standard deviation

14 - Arithmetic mean

6. Matching of probes to amplicons with same Levensthein distance criterion and discarding of 1ll
fitted records.

7. Exploration of dimerization properties with RNAfold

As 1llustrated in the results, post-hoc analysis had been also performed to show 1n easy to percieve
and graphic way, which primers are the onec that after in silico evaluation should be recommended
for further use.

Results

Fig.-1 shows the Venn diagrams with four sets of primers that had the highest performance dur-
ing 1n-silico evaluation. Although US CDC 2019-nCoV N3 had the same 1n-silico performance as
primers from Institut Pasteur, they had been retracted from global usage, hence they are not taken
into account in discussion. Sets of primers shown at the global Venn diagram are recommended for
in-laboratorium validation before applying them for diagnostic purposes.

PL GLOBAL
T Paris_nCoV_IP2 = WHO_E_Sarbeco

1 US_CDC_2019-nCoV_N3 1 Paris_nCoV_IP2
Paris_nCoV_IP4 Paris_nCoV_IP4

Total sequences: 223 Total sequences: 93143

Figure 1: Venn diagram of three best primer pairs for diagnostic purposes of SARS-CoV-2 identification. On the left for
Polish Sequences, on the right for global sequences downloaded from GISAID.

Fig.-2 shows the entire benchmark results in a form of horizontal bar plot, to underline the lack of
performance in many of sets. Versioning of primers is kept due to ambiguous IUPAC coding in many
of them.

To being able to determine whether chemical properties of primers will allow for the amplification
of target, one must also consider occurrence of primer dimer problem

In silico evaluation of SARS-CoV-2 primers performance
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Figure 2: Horizontal bar plot that shows the overall performance of all primer sets. Length of the bars is determined by
how much sequences given pair of primers had been able to match conservatively.
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Figure 3: Graphic representation of two-dimensional primer dimer structures that given primers sets may form. Colors
of nucleotides are assigning probability of positioning in predicted structure (red is equal to highest probability, blue is
equal to the lowest).

Fig.-3 illustrates two dimensional structures of three best sets of primers. Ilustrations obtained with
RNAfold software are very informative and allows for better understanding of the design of primers.
At the top of figure, Paris nCoV _IP2 primer pair had formed the perfect circle with highest proba-
bility (best structure) and at the bottom of figure WHO E Sarbeco had formed a dimerized structure
with high probability of occurrence (worst strusctures).

Discussion

As seen on Fig.-1, geographical region dependent mutations are altering performance of primers.
From plethora of primer sets and their variants only few of them can really be used for the diagnos-
tics of SARS-CoV-2 infections. We believe that rapid benchmark and design of primers may be the
key for better diagnostic power, and that pyprimer python library may drastically improve the state
of diagnostics while applied to design of primers precisely for geographical regions of interest (by
avoiding generalization of the problem).
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Estimated nucleotide reconstruction quality symbols
of basecalling tools for Oxford Nanopore sequencing

Wiktor Kusmirek

Warsaw University of Technology, Institute of Computer Science, Warsaw, Poland

- Abstract - Results

Currently, one of the fastest growing DNA sequencing technologies is
nanopore sequencing. One of the key stages of processing sequencer
data is the basecalling process, which from the input sequence of

currents measured on the pores of the sequencer reproduces the DNA 100% =
sequences called DNA reads. Many of the applications dedicated to 90%, —
basecelling together with the DNA sequence provide the estimated
quality of reconstruction of a given nucleotide. B0% - -
ﬁ af | Albacore
Herein, we examinated the estimated quality of nucleotide 2 0% | ‘ —— Causalal
reconstruction reported by another basecallers. The results showed 2 600 — ‘ —— Flappie
that the estimated reconstruction quality reported by different 51 Guppy ke |
basecallers may vary depending on the tool used. In particular, for 3 50% - | —— by Rp-big-net
some tools, along with successive symbols of the estimated 5 ‘
reconstruction quality (which theoretically should mean more and more | = 40% — | | '
accurate reconstruction), the real quality of the nucleotide increases & 300, — |
(the number of matched nucleotides increaces and the number of o | -
errors decreases). However, there are tools that report the estimated 20% — ‘
reconstruction quality in the basecalling results, but these values are In | .
no way interpretable. What is more, the estimated reconstruction 10% — ‘
quality reported in basecalling process is not used in any investigated 1on —
tool for processing nanopore DNA reads.. [ B |1| m
I T L = N i = - T [ R & B 0
R . = T = B I = T = =
- Dataset symbol of estimated quality
Basecaller No. of reads Sum [Mbp| Mapped [%| Match [7% A
Albacore 4467 116.63 95.77 86.64 1 00% —
Causalcall 4467 115.12 92.21 84.36
Chiron 4467 85.44 81.88 80.43 90% -
Flappie 4467 115.04 95.44 89.66 809 |
Guppy default 4467 115.48 96.47 89.68 %
Guppy kp 4467 113.84 96.35 87.60 % 70% - ‘ Ao
Guppy kp-big-net 4467 114.99 97.32 89.73 S . Fanore
Nanonet 7702 118.18 67.33 84.05 - ‘ T Gunrer
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E ‘ —— Phred scale
o 40% — | |
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#1 MATERIALS

Whole-genome DNA sequence of four traditional Danish
Red Dairy Cattle bulls:

1) The training data set—three animals,

2) The validation data set—the fourth animal.
Correct SNPs (concordant WGS—Chip):

1) Training data set: 2 227 995 SNPs,

2) Validation data set: 749 506 SNPs.
Incorrect SNPs (discordant WGS—Chip):

1) Training data set: 46 920 SNPs,

2) Validation data set: 14 940 SNPs.

Training data set

m Correct SNPs
(97.94%)

E |[ncorrect
SNPs (2.06%)

Validation data set

m Correct SNPs
(98.05%)

® |ncorrect
SNPs (1.95%)
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Deep learning algorithms for the imbalanced

classification of correct and incorrect SNP genotypes

from WGS pipelines

#4 CONCLUSIONS
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of training
data

#2 METHODS
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Classification of validation data by the algorithms, based
on the cutoftf thresholds for the Fi1 or SUMSS metrics.
1) True positive (TP)—an incorrect SNP classified as incor-
rect,

2) False negative (FN)—an incorrect SNP classified as cor-

rect,
3) True negative (TN)—a correct SNP classified as correct,

4) False positive (FP)—a correct SNP classified as incorrect,
5) Fi—values of the F1 metric.



DNA sequence features underlying large-scale duplications and deletions in humans
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» Deletions and sequences upstream of Copy Number Variants have '
low sequence complexity. !
- Large proportion of CNVs overlap with introns. i
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Canonical Correlation- based bioinformatic analysis for effective melanoma biomarker discovery
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ABSTRACT

e Here we introduce a new method based on canonical correlation analysis
(CCA) that uses real-life dataset to meet the challenge of melanoma
biomarker discovery [1-2]. The bioinformatics pipeline was successfully
applied to human skin melanoma multi-OMICS datasets containing: (1)
microvesicle micro-RNA transcriptomics, (2) microvesicle proteomics, (3)
cell-total-RNA transcriptomics.

e The method applies a sparse CCA (sCCA) to three matrices, starting from
features correlation across integrated experimental data [3].

e Validation using clinical data as well as supporting meta-data from
extracellular vesicle dedicated databases allows the identification of
evidence-based candidates for highly significant molecular signatures like
melanoma-associated microRNAs and oncoproteins.

METHOD OVERVIEW

CHALLENGE

e Next Generation Sequencing (NGS) and other advanced large-scale
experimental methods provide enormous amounts of multi-dimensional
biological data. Understanding the interactions between transcriptomics,
proteomics and other types of data generated using different platforms is
fundamental. In such analyzes, the integration of multiple OMICS datasets
together and selection of variables is a key to obtain interpretable results.

e Canonical Coronation Analysis (CCA) is one of the most powerful method
for this bioinformatic challenge. Over the last years, a number of promising
results for implementing CCA 1in the integration of OMICS data have been

proposed [4-5].

omICs pATA BIOLOGICAL HYPOTHESIS

g

e As an input data we used proprietary microvesicle micro-RNA transcriptome
and open source datasets for microvesicle proteome and cells total-RNA
transcriptome [6-7]. Each data type was derived for standardized cell lines:
WMI115, WM266-4, WM793 and WM1205-Lu.

e Data analysis and interpretation was done using method based on sparse
canonical correlation bioinformatics method developed in our research group
(Fig. 2).

e To conduct sparse CCA we use matrices which represent different sets of
features (1) microvesicle micro-RNA transcripts, (2) microvesicle proteins and
(3) cell-total-RNA transcripts. on the same set of melanoma cell lines samples.
Multi-OMICS dataset has samples in rows and the features on columns.
Prepared matrices always had the same number of rows, but had different
numbers of columns.

e In next step there was the visualization of highest correlated features and a list
of this features with respective ranks.

e Last step provided pathways analysis and annotations supporting each
functional insight from extracellular dedicated databases.

a. Input data:

(1) microRNA (2) @ proteins

- N

3) totalRNA

- N

ww % Genomics / m/ /
BIOMARKER
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Fig. 1 Multi-omics data integration and analyses as effective method for

Interpretable results:

e  supporting evidences

\
/ ’\G / hypothesis

e  phenotype predictions

identification of the biomarker candidates using information of biological
interrelationships, bioactive molecules and their functions.

° mechanistic and functional
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b. Sparse Canonical Correlation Analysis (sCCA)
multi-omics data integration highly correlated

and analysis

biological features

microvesicles miRNA
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c. Results: biomarker candidates with supporting biological findings

e We used two melanoma cell line models:

o WM115: a primary vertical growth phase cell line and WM266-4: a lymph
node metastasis vertical growth phase cell line. Bothe established from the
same patient.

o WM793: a primary vertical growth phase cell line and WMI1205Lu: a
metastatic vertical growth phase cell line. First established from patient and
second from nude mice lung metastases.

I MELANOMA MODEL ITI MELANOMA MODEL
WM115 WM266-4 WM793 WM1205Lu
Primary Metastasis Primary Metastasis

Fig. 2 Melanoma cell lines: WMI115, WM266-4, WM793, WM1205Lu
originated from the European Searchable Tumour Cell Line and Data Bank
(ESTDAB)- A Collection of Immunologically Characterised Melanoma Cell
Lines and Databank (Tiibingen, Germany).

@ Supporting biological findings:

e cnriched pathways
[::I,:l e databases annotations

Biomarker
candidates

, |

mechanistic and functional hypotheses 7

Fig. 3 Method overview. a) Method requires three input matrices for different
genomics features for the same set of samples. In this study we used (1)
microvesicle-micro-RNA transcripts, (2) microvesicle proteins and (3)
cell-total-RNA transcripts for four melanoma cell lines models: WMI115,
WM266-4, WM793 and WM1207Lu. b) Method provides visualization of
highest correlated features and a list of this features with ranks. ¢) Last step
provides pathways analysis and annotations supporting each functional insight
dedicated databases for ExoCarta
(www.exocarta.org), Vesiclepedia (www.microvesicles.org) [8].

from  extracellular example:

RESULTS

e We identified highly correlated microRNA, proteins and totalRNA (Fig. 4 and
Table 1). The top 30 highest ranked by the algorithm were selected for further
analysis steps (five each with the highest negative and positive correlation

from each of the data types).

microvesicles miRNA
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Fig. 4 Visualization of sCCA results for melanoma: microvesicles miRNA,
microvesicles proteins and cell totalRNA. The x-axis shows features, while the
y-axis shows the cCCA score. Presented bioinformatic method allows to adjust
the number of displayed features, starting with the most important ones.
Table 1. Results for 30 top scored SCCA melanoma 1) microvesicles miRNA,
2) microvesicles proteins and 3) cell totaRNA with sCCA scores.
miRNA ID sCCA score [protein ID sCCA score RNA (Gene) ID sCCA score
MIMATO0002866 3,95E-01}Q15029 4,45E-01|AMIGO2 5,45E-01
MIMATO0002837 3,86E-01}Q14103 4,17E-01|SVEPI 3,60E-01
MIMATO0004687 3,73E-01|P25788 3,73E-O1JIL31RA 3,38E-01
MIMATO0000724 3,67E-01|P27695 3,30E-O01|RPS14P8 3,07E-01
MIMATO0000281 3,58E-01}/Q6DDS8S8 2,98E-01|ZNF812P 2,88E-01
MIMATO0002859 1 3,15E-01}095232 1,99E-01JHEATRA4 2,81E-01
MIMATO0002838 3,01E-01|P11717 1,15E-01)GFRA1 2,72E-01
MIMATO0002835 2,76E-01|Q9Y6E0 6,95E-02|NRP1 2,67E-01
MIMATO0002855 1,31E-01}P07195 3,17E-01JHRH1 2,24E-01
MIMATO0002833 9,78E-02/Q16186 3,61E-0I|NCLPI1 6,58E-02
e Sclected top 30 highest ranked biological features were used for functional

analysis starting with finding the most important interactions. We combine

RNA interactome: http://www.rna-society.org/rnainter/  with  protein

interactome: https://string-db.org/ . We use only strongest experimental

evidences with highest confidence score (>0.9).

The three most important connection clusters were selected (Fig. 6). The
clusters were supplemented with information from databases dedicated to
extracellular microbes. Based on these data, two very significant protein with
strong evidence for melanoma were found: IGF2R (protein ID: P11717,
ExoCarta ID: ExoCarta 3482) and EFTUD2 (protein ID: Q15029, ExoCarta
ID: ExoCarta 9343).

The interactome study based on top 30 features also showed functional
molecular enrichments like telomeric and damaged DNA binding or protein
tyrosine kinase related pathways.
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hsa-miR-519b-3p

Fig. 5 Interactome analysis. We identify two oncoproteins with strong evidence for
extracellular vesicles derived melanoma processes: IGF2R (protein ID: P1171) and
EFTUD?2 (protein ID: Q15029).

Table 2. Functional enrichments in study network.

Molecular Function (Gene Ontology)

GO term description

GO0O:0042162 telomeric DNA binding

GO0O:0004714 transmembrane receptor protein tyrosine kinase activity
GO: 0003684 damaged DNA binding

GO:0019955 cytokine binding

GO:0004713 protein tyrosine kinase activity

DISCUSSION

e Proposed method detected important signatures in multi-omics datasets and
identified biomarkers candidates like circulating cancer-associated
microRNAs and oncoproteins.

e Pipeline ranked significant biological features using sSCCA score.

e Mecthod allowed to examine the biological processes related with melanoma
progression by selecting molecular signatures that have supporting evidence
in databases.

e Mecthod 1s dedicated to extracellular melanoma biomarker identification but
it is elastic and can be adapted to research on other data and cancer types.
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Gliomas are one of the most common and deadly cancers and because of that are intensively studied. At the same time, one of the most promising and still unfathomable
issue is the role of the REST transcription factor in brain carcinogenesis processes. On the other hand, the canonical role of REST is regulation of neurogenesis and glial cells
development and participation in the neurosecretion process. REST is the main repressor of transcription in neurodegenerative diseases and is associated with the
regulation of ion channels and cytoskeletal proteins, but also other transcription factors (TFs). Therefore REST is described as both, activator and repressor of transcription
depending on physiological or pathophysiological context. The purpose of this study was to check whether any TF motifs overlap or are in close proximity to REST
uranscription Factor Binding Sites (TFBS). /

For REST ChIP-seq peaks from U87 cell line we assigned their summits within the 200bp sequence around the summit (+/- 100bp), using open source bioinformatic tools.
For that purpose we used Position Weight Matrices (PWMs) of TF motifs from HOCOMOCO[1] database and 14 additional REST PWMs, mainly from ENCODE[2].

The search of TF motifs was performed using PWMEnrich[3] Bioconductor R package. To identify specific transcription factor binding sites with the corresponding g-values,
we used online FIMO[4] tool from MEME Suite 5.0.5. Additionally, peaks were assigned to gene promoters and based on TCGA glioma RNA-seq and in-house REST ChlIP-seq
Qata it was specified whether REST represses or activates the expression of the particular genes based on the correlation results, negative or positive, respectively. -/
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Fig. 2 Clustering of TF motifs characteristic for REST activated genes,
REST repressed genes and common motifs based on DNA sequences.

 We identified 202 TF motifs (12 REST motifs) in the 200bp sequences surrounding REST ChIP-seq peaks for the activated genes sequences and 237 TF (14 REST motifs)
motifs for the repressed genes sequences. Top places in the motifs ranking for the REST activated genes were occupied by the KAISO motifs, characteristic for the ZBTB33
transcription factor. (Fig. 1)

* Motifs characteristic for activated (n = 21) and repressed (n = 56) genes clustered separately. (Fig. 2)

* Analysis of the nucleotide sequences of the identified motifs showed that they significantly differed between REST and ZBTB33, meaning that the co-occurrence of these
TF motifs within the examined sequences was not due to sequence similarity. (Fig.3a)

 We observed that in the REST activated genes, KAISO motifs were significantly more frequent in the proximity to the peak summits than in the rest of the examined 200bp
sequence. (Fig. 3b)

 ZBTB33 motifs occurred with higher frequency and lower g-value in the REST activated genes, while the majority of REST motifs were within the repressed genes. (Fig. 4)

\These results may suggest that while the main REST role may be repressive, its role within the activated genes promoters can be at least co-dependent on ZBTB33. J
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*To study molecular differences In enhancers of different
glioma grades: pilocytic astrocytoma and Higher Grade

Glioma.

*To detect specific methylation sites In Transcription Factor
motifs responsible for changes of its transcription factors
binding affinity and as a result - changes of target gene

expression.
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Fig.1l. Schematic representation of target gene expression regulation via
enhancer.
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Fig.4. Mean GC content was 46 % for HGG and 54 % for PA — difference
was statiscally important (HGG n = 124, PA n = 114, Mann-Whitney U test:
p-value = 4.292992e-17, W = 11528)

Conclusions

- HGG-specific enhancers had lower frequency of guanine
and cytosine nucleotides then PA-specific enhancers and

higher global DNA methylation level.

- Methylation pattern of 14 TF motifs was confirmed to be
consequently hypermethylated in HGG compared to PA
samples and all of this motifs were found In at least one

ehnancer with differentially expressed target gene.

- These results indicate specific TF motifs whose methylation
may have an influence on regulation of TG expression

and therefore contribute to gliomagenesis.
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Materials & Methods

Genome coordinates of

. Motif search
active enhancers

Chip-seq for H3K27ac

Methylation level per single
cytosine
(~3.5 min sites per sample)

Bisulphite seq DM cytosines calling

RNA-seq Read counts per gene DE genes calling

Tab.1. Analysis performed on three layers of biological information for the set
of 7 PA and 10 HGG samples.
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Fig.3. Number of CpG sites devided into three ranges of methylation
level.There are more hypermethylated sites in HGG-spec. Enhancers
comparing to PA-spec. enhancers (X-squared = 1309.9, df = 1, p-value <
2.2e-16).

@ Enhancer
O TG
® DETG

PA HGG
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Abstract
Although human genome 1s widely studied since many years its complexity remains Annotattion
not fully understood. One of the mechanisms that stands for that is alternative splicing, Samples ¥

Study design

A: mixture od 10 different Alignment Data
cancer cel lines

which 1s a process of joining exons 1n multiple ways, so that novel mRNA and, in fact,
novel proteins are produced. Currently we are not fully aware of all of the splicing

Panel
events that might be present in a given genome. One of the tools that provides the A >anel2 B: healthy individual Spladd
possibility to investigate that is Spladder. It builds an augmented splicing graph, based 4 X B » 5-nel3 C: A and B mixed in 1:1 ratio _P a . cr . .
on current annotation and than expands it with novel events. Currently Spladder C WTS PolyA Panels pipeline Splljiirnng]eGnraeph

supports detecting six different types of such events. We used Spladder software on
data from SEQC consortium project [1][2].

WTS riboZero

Panell: around 1000 genes
Panel2: around 2000 genes

We 1nvestigated 3 samples ( A- mixture of 10 different cancer cell lines, B- healthy Panel3: around 2000 genes
individual and C- A and B samples mixs:d in 1:1 ratio) run on different. RNA tgrgeting Detected Splice
panels, as well as on whole transcriptome sequencing data obtained with two Events
protocols- ribo-depletion and polyA selection. Preliminary results show that there 1s a Events detected PSI value
fraction of genes containing novel events, which seems to be cancer or sample IR
specific, but majority 1s the same irrespective of sample. It seems that the current gene e Alternative 5 prime end PS| =
model can be extended by this data. Spladder also revealed that the fraction of intron * Alternative 3 prime end IR+ER Quantified Splice
retention events is higher for whole transcriptome sequencing data than for targeted *  Exonskip . Events
approach and is higher for ribo-depletion protocol than for polyA selection, what is *  Intron retention Valid events
expected after comparing sample processing and library preparation for these *  Mutually exclusive exons |
9 h *  Multiple exon skip Events with PSI value above 0.1
pproaches. .

- , for all 4 replicates
These results show that there 1s still a lot of work ahead of us to fully describe our Differentail
genome but at the same time that Spladder might be a good tool, not only for that Analysis/ sQTL Tests

challenge, but also for others like detecting cancer specific events.

Results
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Introduction Gene-Ontolo GO), Pathways and Single Nucleotide
Polymorphism (SNPs) Mappin

In recent years, with the development of high throughput methods, researchers obtained access to
a vast array of biomolecular interaction data. Most of these biological data can be represented as
networks or graphs. Thus, network analysis 1s becoming a powerful tool for modeling biological
systems. We propose a meta-network representation of the complete map of DNA pairwise
interactions for human lymphoblastoid cell lines combined with information about encoded
proteins and metabolic pathways. In a single graph (meta-network) we integrate multiple
biological networks, namely, Chromatin Interaction Network (CIN), Genomic Association
Network (GAN), Protein-Protein Interaction Networks (PIN), Gene Ontology (GO) terms, and
metabolic pathways. Thus cheating the meta-network connecting 3D chromatin interaction to

functionality.

>_ Protein-Protein
Interaction Network
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Results
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We analyzed the meta-network and found proteins P28062 and P28065 encoded by genes
PSMBS8 and PSMB9, present in location chr6:32014923-33217929, share around 60 pathways

 ' which are higher than the average concentration of metabolic pathways shared between two
proteins.
Anchors o q o .
\ / Critically, the genes PSMB8 and PSMB9 are also connected by proximity with HLA genes and

TAP genes using the proteomic networks. The protein P28062 and P28065 are two of the 17
essential subunits (alpha subunits 1-7, constitutive beta subunits 1-7, and inducible subunits

The meta-network can give us 1nsigths into the interactions between genomic, proteomic and

/" Gene-Gene Ampeaton N\ including betali, beta21, beta51) that contribute to the complete assembly of the
chromatin (structural) networks. In particular: the proteins P28062 and P28065, due to a large
numer of shared pathways and the proximity of their encoding genes to the known autoimmune-

20S proteasome complex.
\ .\Chmmatin-lnterﬂctiun Network ’/
related genes, can be critical for studies of autoirmmune disease. Moreover, the presence of

[
/ Conclusion
essential genes and proteins, the study of genome rearrangements in from of structural variants
Creating PPI Network

in this region can give us novel insights into the study of autoirmmune diseases.

/ \ In conclusion, our meta-network model can be instrumental 1n getting a complete picture of
PPIDB o biological functionality linked with 3D chromatin interactions. The network can also be extended
[ e ] [ — ] St 1 e o to incorporate Structural Variants which can provide an 1dea of how functionality varies with the
\d mapping by my Physial expeciments ) larger genome rearrangement.
: IntAct ] [ HURI [ HPRD | > | Merged PPl | | > ‘ Final PP| ‘
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Abstract

Nowadays, monoisotopic mass is used to be an important feature in top-down proteomics. Knowing the exact monoisotopic mass enables precise and quick protein identification in large
protein databases. However, only in spectra of small molecules monoisotopic peak is visible, for bigger molecules position of the peak have to be predicted. By improving prediction of the
peak, we contribute to more accurate identification of molecules, what is crucial in fields such as chemistry and medicine. In this work we present MASTERMIND algorithm, that is a
two-step procedure to predict monoisotopic mass for proteins with 8-400 kDa mass range. The first step is to approximate monoisotopic mass by linear regression based on average mass and
variance of a given spectrum. The second step rounds linear prediction to the closest point which is reliable to be a peak in the spectrum. For 96.6% of proteins, prediction error is below 0.2
ppm, what is approx. 30% better than in recently proposed MIND tool. Our algorithm was implemented in python, data analysis was performed in R. Proteins to learn the model comes
from Uniprot database, their theoretical spectra were calculated by use of IsoSpec structure calculator.

MASTERMIND algorithm How rounding improves prediction?

I. INITIAL PREDICTION —= {5 15
At the beginning, we calculate initial prediction of monoisotopic mass, by use of spectrum’s % % o .
average mass and variance: E o
A & O
Mmono - 50 + 6avg ' Mavg + 5\/&1‘ . Mvar- E I"E ° °
Prediction is not good enough for practical use, however, for 96.6% proteins prediction S 0
error is smaller than 0.5 Da, what is crucial for our algorithm. We want to round initial el let e 0 10
prediction to closest point on the grid
W(C,A)={Cn+A : neN}, 3 g . 0
which determine where peaks that are not visible on spectrum should be. £ =
s o 100 100
QO C
w 2
II. EESTIMATION OF THE GRID STEP ( 2 = 50 50
© >
o
Grid step (C, is equivalent to circumierence of circle, that rolled through spectrum concen- °o0 m I 0
-1.0 -0.5 0.0 0.5 1.0 -10 0 10
trates all peaks on the smallest arch. prediction error [Da] prediction error [ppm]
G—* Comparison with MIND
: ; l > MIND prediction is based on the most-abundant peak, MASTERMIND is based on
Mathematicaly, we have average peak and variance;
(o = argmin Var P (S), > MASTERMIND is close to true monoisotopic mass in 96.6% versus 66.5% for MIND:
CeR

> MASTERMIND is better in every mass range it was compared with MIND. and is trained

where bi .
% omiz / o on bigger mass range;
Pe(z) = 5 log | exp c zlm[ log ( Z;p Y (27’(’2]? / C))] ' > MASTERMIND loses accuracy fast, when spectrum resolution is getting worse:
L J4S g
To avoid long calculation for each protein, we trained linear model that gives (; based on -1 Da 0 Da +1 Da
protein average mass ) 1000 1000 10007 Method

C =0 T Yavg Mavg°

- MASTERMIND

750 750 750 | | [l wno
[II. ESTIMATION OF THE GRID SHIFT A €
= 500 500 500
2 . . S,
When we have (, we calculate grid shift, to fit the grid into spectrum O
A = argmin Y PP - min  [p™* - w| = Re L log( > PPl exp (2mip™/ ¢ )) . 250 250
A[0.F] pes weW((,A) 2T s _

250 J
0 . J J 0 0 . J
I1V. FINAL PREDICTION 8-20 20-40 40-60 8-20 20-40 40-60 8-20 20-40 40-60

Mass range [kDa]
To obtain final prediction, we round initial prediction to closest point on the fitted grid, What next?
and apply slight correction

N

Moono = argmin ‘w - Mmono‘ + A+ Miono- > Elaborate a method, that finds average mass and variance regardless of spectrum reso-
weW((,A) lution;
Data & Tools > Test MASTERMIND on real spectra;
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Introduction Interdigited protein example

Interdigiteted motives are specific cases

of protein domain swapping [1] including
secondary structures from two different
polypetide chains creating a single beta sheet.
Additionally, interdigiteded stuctures consist
of interchangeable occurrence of beta strands

from different chains in beta-sheet.

In our work we search Protein Data Bank|2]
for proteins that have the motive described
earlier. For this task we used BioShell [3], [4]
and graph theory. For further analysis, a group
of proteins with the longest six-element beta

sheet was adopted, in which their structural,

sequential and functional similarity was studied. Protein with six-element interdigitated beta sheet - AF2331(5]. Darker colors represent
secondary structures involve in motive.

Graph theory application Interdigited protein - examined group of proteins

In our project we applied graph theory

to describe interactions between beta strands.
For this work we state that each vertex

of a graph is single beta strand. If the stands
create a hydrogen bond, we assume an edge

of the graph between them. To check if the beta
sheet 1s interdigitated, we color the graph

depending on the assignment of a beta strand
to its protein chain. At this point, the depth-first
search algorithm is used to gather information
if interacting strands belong to different chains.
The information collected also enables analysis
in relation to the length of the motif.
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Schematic application of the algorithm on the

example of protein AF2331 Siux proteins with six-element interdigitated beta sheet obtained by analysis

Conclusions Basic informations about examined group of proteins

e Our approach has allowed us to 1dent1fy new Protein (PDBid.) Year of publication = Sequence length [aa] Homodimer? Original organism Crystal system  Resolution of measurement [A]
: dioi d : 1WZ3 2005 96 Yes Arabidopsis thaliana C2 1,8
Interdigitated proteins. 2H]J1 2006 97 Yes Haemophilus influenzae C2 2,1

* We identity six proteins with six-element 2PJS 2007 119 Yes Agrobacterinum fabrum C2 1,85

. . 4CNO 2014 97 Yes Homo sapiens C2 1,75
lntedlglteted beta sheet. 4CMZ 2014 92 Yes Homo sapiens C2 2,7

e All of them are homodimers and their length 2FDO 2005 94 Yes Arcbaeoglobm fulgz’dm C2 2,4
does not extend beyond 120 aminoacids.
* We also identified a group of proteins with

a smaller beta card. However, more research References

is needed in this subject. 1 M.]J. Bennett, S. Choe, and D. Eisenberg, “Refined structure of dimeric diphtheria toxin at 2.0 A resolution,” Protein Sci., 1994, doi: 10.1002/pro.
e A her ; . .. . . hich 5560030911.
nother interesting topic 1s proteins, in whic 2 H. M. Berman et al., “The Protein Data Bank,” Nucleic Acids Research. 2000, doi: 10.1093/nar/28.1.235
inter djgitated beta sheets are formed 3 D. Gront and A. Kolinski, “BioShell - A package of tools for structural biology computations,” Bioinformatics, 2006, doi: 10.1093/bioinformatics/
btk037.
. 4 J.M. Macnar, N. A. Szulc, J. D. Krys, A. E. Badaczewska-Dawid, and D. Gront, “Bioshell 3.0: Library for processing structural biology data,”
more than two chains. Biomolecules, 2020, doi: 10.3390/biom10030461.
5 S. Wang et al., “The crystal structure of the AF2331 protein from Archaeoglobus fulgidus DSM 4304 forms an unusual interdigitated dimer with a
new type of a + [ fold,” Protein Sci., 2009, doi: 10.1002/pro.251.
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BioShell software can

efectivelly analyze rings
N small compounds

Analysis of small molecules parameters
in ligand-protein complexes
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Intro Results

Structural information about ligand- We analyzed 271 structures, thet were complete and determined by X-ray
macromolecule complexes is critical crystallography out of 5673 deposites that contained NAG ligands. A a referenceing
for biomedical sciences. This X-ray crystallography. As a refence structure the ideal.sdf file form PDB was used.

ideal NAG structure

analysis will lead to an improved ..
library of restraint parameters and 0.03 L.
subsequently better refinement of . :
ligand-protein  complexes  which 0.02 .
contain 2-acetamido-2-deoxy-beta- _ ) . ) :
D-glucopyranose (NAG). = 0.01 S - . O

Y S S S S — SR S R -
Methods ? . Y - RS -
We chose the most common small  » : I : R - "
molecule from PDB which = ' "e . :
participates in a biological pathway = U : ,
and has one aliphatic ring. We found o : :

5673 deposits and used BioShell - :
package to analize their geometry.
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/\ 03 C | @ N 0 B Missing ligand atoms
c8 007 S S5 OIS are a common problem
NOLS OS POQ ~1000-500 0 500 1000 i deposits
N ’ N Conformation =BioShell is a suitable
Figures package for  ligand
?ﬁf‘éézsru&De%S'e‘?fﬁt%?é’.J‘A%%%TSE“&SMLTE Eﬁé‘&‘iﬁ??%%?S'VS%ﬂ%?&sezﬁs'ﬂ?ﬁu%?i%i geometry analysis.
membpber ring over time.

This research was funded b
(D) NAL S CIENCE C ENTRE the National Science Centrey(PoIand)

Grant No.2019/35/N/ST6/04459

& > )
\i gé/ ¢ UNIVERSITY

/ﬂ’ﬂ

*“‘9{\, i v = OF WARSAW
w %» -




Cost-sensitive feature selection - information theory approach

Tomasz Klonecki - Institute of Computer Science, Polish Academy of Sciences

Research Objective

FREE

—)  Age Sex, Overall health, ... [H:I E/’EM—I_‘?[H:IW
or

SICK

Feature selection is a crucial problem in many bioinformatics tasks. Usually the considered
variables are cheap to collect and store but in some situations the acquisition of feature values
can be problematic. For example, when predicting the occurrence of the disease we may consider
the results of some diagnostic tests which can be very expensive.

CHEAP
o : . , _ , — Blood pressure, Weight, ...
The existing feature selection methods usually ignore costs associated with the considered

features. The goal of cost- sensitive feature selection is to select a subset of features which allow
to predict the target variable (e.g. occurrence of the diseases) successfully within the assumed
budget.

PATIENT

EXPENSIVE
Blood tests, Endoscopy, ...

The main purpose of this research is to review filter methods of feature selection based
on information theory and to propose new variants of these methods considering feature costs.

Artificial Dataset Feature Selection Procedure

. Generate original features from normal distribution X;, X,, .., X, ~ N(©,1)

Problem statement

S* = arg max I(Y,5)

. Generate target variable Y based on X;, X;, .., X, with binomial distribution.

1
140 S:C(S)<B
5. Discretize data with uniform method (each bucket range is equal length) for 20
buckets.

1
p
3. Generate noised features X;'=X; + E; where E; ~ N(O, 0y).
4

. Assign cost to each feature c; =1 and c;(4)” =

SOLVE
Iterative greedy algorithm

F(I(Ya Xk|S)? ch)

mm Criginal features
o MNoised features

arg 1max
Xk:C(S—FXk.)(B

F FUNCTION
EXAMPLE

Specific form of greedy algorithm

arg max —————=

X, = d
Xk:C(S—I—Xk)<B (Ck)

Approximations of the conditional mutual information

Imim (Y, Xy) = I(Y, Xi)

I(Y, Xi|S) = I(Y, SUXK)—I(Y, §) = | Imirs(Y, XilS) = I(Y, Xi) — BYE x5 I(Xk, X;)

Jerre(Y, Xi|S) = I(Y, Xk) — B x, esl (Xk, X;) — I(Xk, X;|Y)]

Experiments

MIMIC3 Dataset

Y SEETY SEET W

"'-u-.--*"-r... ~ip

.-‘-

MIMIC 1l is one of the most popular medical datasets in the
world. For experiments we use data of 6500 patients.

Types of features:

- basic patient information (Age, gender, ...)
- basic medical tests (HR, Blood pressure, ...)
- advanced medical tests (Blood tests, Urine tests, ...)

BUDGET 50 %

Target variable:

We can choose one of many target variables, each represents
a positive or negative diagnosis of the specific disease. For
experiments on this poster we will focus on hypertension
disease, which almost 4500 patients were diagnosed with.

BUDGET 50%

— budget=3.88
--+- no regard to cost
--«- with regard to costs

— budget=223.40
--+- no regard to cost
--«- Wwith regard to costs

ID Feature Cost ID Feature Cost

Anion Gap Blood STD Not clear urine CNT

BUDGET 90%

— budget=6.98
--+- no regard to cost
--«- with regard to costs

- (|FE cost sensitive
=== (CIFE

O 00 oo U A~ W = O

N N N N N N N N N N R R B R B R Rp
O 00 N O U1 B W N B O 0 N O 1 N B O

Anion Gap Blood RNG
Calcium in blood STD
Creatinine AVG
Creatinine MED
Creatinine STD
Phosphate AVG
Phosphate MED
Potassium AVG
Potassium MED
Sodium RNG
Hermatocrit AVG
Hermatocrit MED
Hemoglobin Blood AVG
INR in blood MED
Erythrocyte MED

Erythrocyte volume AVG
Erythrocyte volume MED
Erythrocyte volume STD

Platelets in blood RNG
APTT in blood STD
APTT in blood RNG
Erythrocyte dist MED
Leukocytes MED
Clear urine CNT

Bilirubin in urne NEG

Color of urine OTHER
Leukocyter in Urine

PH of Urnie AVG

PH of Urine MED

Gravity of urine AVG

Gravity of urine RNG
Urobilinogen in urine MEDLeve
Age

Activity tolerance GOOD
Activity tolerance POOR
Body surface at admission
Braden moisture

Braden Nutrition POOR
Braden Sensory Percep NO IMPAIR
Braden Sensory Percep LIMIT
Ectopy Frequency PRESENT
Ectopy type NONE

Eye opening SPONTAN

Eye opening STIMUL

Eye opening NO

Heart Rate AVG

Lung Sound NOT CLEAR

Level of conscious ALERT

— pudget=335.10
--+- no regard to cost
--«- Wwith regard to costs

GitHub Conclusions

For the purposes of this research, | created an open-source library in Python, the * Cost sensitive feature selection methods choose variables much more cost efficient than
library includes: traditional methods.

* Feature selection using information theory.  We experimented with various F functions, but division function is the most natural way of

T e e scaling two completely different numbers (costs and information increase).

e We are currently experimenting with r parameter selection, to obtain the best possible

* Generating artificial data sets.
results. Method is based on maximization of J criterion increases.

* In future we will try to extend our selection method to consider features with shared cost.
For example various blood results can be obtained during one test, for which we pay only
once.

https://github.com/Kaketo/bcselector

@ selector
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HIERARCHICAL CLUSTERING IN SEARCH FOR THE MOST
RELEVANT VARIABLES IN SMALL-N-LARGE-P DATASETS

Radostaw Piliszek and Witold Rudnicki
Computational Centre, University of Bialystok

Introduction

Gene expression and genomic datasets from biomedical studies belong to the so-called
small-n-large-p class. Such datasets describe a relatively small number of objects (records),
counted in tens, hundreds and thousands, using a large number of variables (features),
counted in tens, hundreds and thousands of thousands. Many machine learning algorithms
suffer performance penalties in such a case. Moreover, human analysis of the studied
phenomenon 1s severely hampered.

Various feature selection algorithms have been proposed to tackle this problem. However,
there might still exist many relevant features. A naive approach of top-N ranking will
usually discard relevant information and still keep sets of variables carrying the exact same
information. Eliminating correlations upfront is of no use because correlation does not map

exactly to information about the decision variable.

Datasets under scrutiny

The presented results have been obtained on datasets from the CAMDA 2017 Neuroblas-
toma Data Integration Challenge. There are 3 datasets in total, all describing the same set
of 145 patients:

e CNV — 39 115 array comparative genomic hybridization (aCGH) copy number variation

(CNV) profiles,
e MA — 43 349 GE profiles analysed with Agilent 44K microarrays,
e G — 60 778 RNA-seq GE profiles at gene level.

Proposed algorithms

We reuse the concept of hierarchical clustering applied in a bottom-up fashion (i.e. starting
from one-feature clusters) but modify its linkage properties. The most common linkage
— single (also known as minimum linkage) does not suit the problem well because of its
tendency to merge early. There is also no clear notion of the cluster representative in the
basic hierarchical clustering. Average linkage does not apply either because it is not known
what an average feature would mean. Hence, we propose representative-based linkage with
3 ways to establish the representative:

¢ HCN — hierarchical clustering with native (natural) ordering — using the ordering from
all tuples of potentially relevant variables,

e HCO — hierarchical clustering with original ordering — using the ordering from initial
MDFS-2D output,

e HCS — hierarchical clustering with subset ordering — using the ordering from MDFS-2D
applied only on potentially relevant variables.

Our proposal

We propose an approach to limit the number of variables further by clustering variables
using an existing measure of relevant variable discovery and scoring — the MultiDimen-
sional Feature Selection (MDFS). We searched for clusters of variables having relatively
negligible information gain between themselves. Each cluster is then replaced by the clus-
ter representative variable. There are, however, several ways to build such clusters, even
when constrained to hierarchical methods. There are also different ways to choose the
representative.

Methodology

The basis for our research is the information gain (IG) metric as obtainable from MDFS. In
particular, the interesting one is the two-dimensional MDFES variant, also called MDFES-2D.
Such a metric can be computed two-way, once to obtain the potential relevant variables
list (along with their tentative ranking). Secondly, to compute all pairwise IG values for
selected features. These both serve as the input to further, clustering algorithms which are
meant to remove redundancy from the selection.

It is unknown uptfront what threshold of IG is relevant for a particular case.
we compute classification score using random forest OOB score from features selected at
integer levels of IG threshold (since they map to integer increases in explainability).

The potentially relevant features are discovered using MDFES-2D with 30 random discreti-
sations and Benjamini-Yekutieli p-value adjustment. The cutoff threshold is set to 0.10.

Hence,

Discussion

The different variants of the algorithm behave differently and may give varying results even
with the same threshold and/or number of clusters.

The subset variant (HCS) performs noticeably worse. This might be due to losing the
information about really relevant variables.

Further research is required, including different datasets, especially artificial ones with a
known structure, and cross-validation.

Furthermore, it can be argued that reapplying clustering algorithms designed for object
clustering may give suboptimal results for feature clustering as they disregard important
properties not present in object relations, e.g. correlations and synergies. For such cases a
more dedicated approach might be needed.

Results Bibliography

CNV MA G e Zhang W, Yu Y, Hertwig F, Thierry-Mieg J, Zhang W,
IG| HCN HCO HCS HCN HCO HCS HCN HCO HCS Thierry-Mieg D, Wang J, Furlanello C, Devanarayan V.,
1 1150 0.241142 1 0.22 150/ 0.211978/0.12 1991 0.12 974 0.16 1194 0.12 11195 0.12 1184 0.13 Cheng J, Deng Y. Comparison of RNA-seq and microarray-
298 10.21 /100 0.22] 96 | 0.21 1447 0.13 1460 0.11]450 0.13 | 547 | 0.10 574 10.10| 544 1 0.12 based models for clinical endpoint prediction. Genome bi-
3159 021 57 0.17 63 10.22 218 0.10 227 0.12]216 0.13 | 271 |0.09 291 0.07| 276 1 0.13 ology. 2015 Dec;16(1):1-2.
4140 10.17 39 0.19 36 10.19/106/0.09120/0.10 107 0.12| 137 10.07 152 0.08| 142 0.11 o Polewko-Klim A Lesitiski W, Mnich K, Piliszek R, Rud-
5 261019 23 0.17) 26 0.19 53 10.08 71 0.08 60 0.14 67 [0.08 72 10.08 76 0.15 nicki WR. Integration of multiple types of genetic markers
613 0.15 13 10.15 17 /0.17 28 10.10 43 0.07| 37 0.12] 36 [0.08 40 0.07 45 0.12 for neuroblastoma may contribute to improved prediction
711 10.15 10 0.5_7 10 [0.20 15 O.Q9 26 10.08 19 0.5_2 20 O.QS 20 10.08 25 0.5_3 of the overall survival. Biology Direct. 2018 Jan 1;13(1):17.
8 &8 10.13] 8 O.:_6 6 020 9 O.:_l 18 10.07| 13 1 0.13 15 O.:_O 15 0.98 18 O.:_4 e Piliszek R, Mnich K, Migacz S, Tabaszewski P, Sulecki A,
9/ 6 013 6 017 4 [022 7 0.12 11 0.08) 9 0.10 9 |0.12 & 0.12] 9 10.13 . 7 . .
_ , _ _ _ _ _ Polewko-Klim A, Rudnicki WR. MDF'S: MultiDimensional
100 5 017 5 10.15 4 [022 5 0.12 6 0.10] 7 0.10 5 |0.15] 5 10.15 5 [0.15 Feature Selection in R. R J.. 2019 Jun 1:11(1):198
112 /014 2 024 1| - 3 013 6 0.10] 3 |0.12] 3 0.14] 4 10.10 3 |0.19 | o
12 21014 1 - - - 929015 3 015 2 013 1 i 3 012 3 019 e Mnich K, Rudnicki WR. All-relevant feature selection using
132 014 - - - - 1 - 13015 2 013 - i 1 i 3 1019 multidimensional filters with exhaustive search. Informa-
M 1 - - - - 3015 - i ) i ) 5 1018 tion Sciences. 2020 Mar 12.
5 - - | -] - 1-1-1-1=-121019 - | - - - - - 2 10.18
16/ - | - | - | - | -1 -1-1-121019 - | - - - - - 2 10.18
17 - - | - - -1 -1-1-1717]-1-1] - - - - - 1 -

The very first column (IG) shows the threshold at which the result is obtained. First subcolumn of the following —~ rrrrrerrrmrmmmmmmm s

columns shows the number of clusters (representing features). Second shows the OOB score (the less, the better; the

best score in bold).

All computations have been carried out on the computer clus-
ter of the Computational Centre of University of Bialystok.
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Exploring the microbiome protein structure space using
simulations and deep learning

Pawet Szczerbiak!, Douglas Renfrew?, Julia Koehler Leman?, Daniel Berenberg?,

Chris Chandler?, Vladimir Gligorijevi¢’, Richard Bonneau?, Tomasz Kosciétek!

IMatopolska Centre of Biotechnology, Jagiellonian University —l-S F
’Flatiron Institute, Simons Foundation, New York, USA \

Microbiome Immunity Project (MIP) New folds

e Human gut microbiome comprises about 3 million unique bacterial genes Working definition: structures with Non-redundant databases (our choice):
TM-score below some predefined threshold e CATH superfamilies (6119) — done

e Main goal of the MIP [1] is to understand the role played by microbiome bacteria
(usually 0.5) with respect to the known fold

e Exploring them would give us a possibility to treat diseases that originate in our microbiome

space. e PDB90 (~60k) — to be done
In the first stage of the project we want to map all proteins produced by those bacteria. For
this purpose we prepared a dataset consisting of ~300,000 unique newly predicted structures TM-score: » MIP 1.0 vs CATH 4.2
which we call MIP 1.0. We used two methods: Rosetta [2] and DMPFold [3] which utilize 10— 0.5] (0.5 - 0.1]

different approaches to the protein structure prediction problem. different folds same folds 05

2 de novo protein structure [ = e J o 0.61 :“‘"! ‘§
prediction methods osetta | 0 ¥ 55 - &
= ' - 0
— s ad O
1,003 reference genomes from ~2,400,000 raw protein ~300,000 predictions for o4 _ }ﬁ T 1ol§
microbial part of the tree of life sequences representative domains e =
0.2 :
- W Potential new folds
GEBA genomes MIP sequences . MIP 1.0 structures 0.0 | | | | 100
0.0 0.2 0.4 0.6 0.8 1.0
J TMEgse

- Not an MP
. Alpha Soluble

Alpha Beta - Transmembrane

. Beta . Unknown

. Few Secondary Structures

Structure space visualization

e Structure models were encoded using pretrained autoencoders

new folds metadata 3D structure space e Number of dimensions was further reduced using UMAP

In the poster we are showing differences between both methods with special emphasis on new e Visualizations show ~9 000 Rosetta and DMPFold models
folds identification and structure space visualization. We also plan to create an open access
database that anyone can use in their own analysis.

. Alpha

Alpha Beta

. Beta

. Few Secondary Structures

Rosetta vs DMPFold

Rosetta MIP 1.0 vs CATH 4.2
. ] %07 — Alpha —— Rosetta
e Developed in 2002 but constantly improved o] Beta ~~- DMPFold
—— Alpha Beta

transmembranes

Few Sec. Str.

e Monte Carlo search through space of con-
formations to find minimal energy fold

DMPFold

e Developed in 2018 deep learning based pro-
cedure of inter-atomic distances, torsion an-
gles and hydrogen bonds prediction
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-
——————————————————
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O
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Number of structures with larger TM-score [%]
B
(]

——
10 - —
e Faster than Rosetta; predicts less o (more low high
07 |
a/f and () structures 0T 02 03 oa 05 o6 o7 oa
TM-score relative contact order disorder
095 Relative contact order for MIP 1.0 and CATH 4.2 representative structures
: - 10°
— Rosetta |
- DMPFold [
— CATH I
0.20 - e o What's next?
o CATH N [\ [ §
S .15 4 AV L33 : : :
> 0.15 S e Our ultimate goal is to reach ~1,000,000 annotated protein models
S \ \ RS e MIP 2.0 will gather structures from the Unified Human Gastrointestinal Genome catalogue
- 112 @
.E 0.10 - — - 107 & .. . . . . .
E /= e N - E e For structure prediction we will use trRosetta [4] — improved, deep learning inspired Rosetta
0.05 - 10 MIP data compared to the PDB
[ 1000000 -
e
OOO T T T T T T T T T T T T T T i
40 100 200 300 500 800 1000
Structure length
800000 A

MIP 1.0 + MIP 2.0

E 600000 A
References z
]
€
1. www.worldcommunitygrid.org/research/mipl/overview.do 2 4000001
2. C.A. Rohl, C.E.M. Strauss, K.M.S. Misura, D. Baker, Protein structure prediction using rosetta Methods
Enzymol., 383 (2004), pp. 66-93. 500000 -
3. J.G. Greener, S.M. Kandathil, D.T. Jones, Deep learning extends de novo protein modelling coverage of
genomes using iteratively predicted structural constraints. Nat Commun 10, 3977 (2019).
oL —

4. J. Yang, |. Anishchenko, H. Park, Z. Peng, S. Ovchinnikov, D. Baker, Improved protein structure prediction
using predicted interresidue orientations, PNAS, 117: 1496-1503 (2020).

PDB50 PDB90 PDB100 PDB MIP 1.0 MIP


www.worldcommunitygrid.org/research/mip1/overview.do

Mary Maranga?, Pawet P. tabaj!, Richard Bonneau?, Tommi Vatanen3#, Tomasz Kosciotek!

!Matopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
2 Flatiron Institute, New York, NY, USA

3 Liggins Institute, University of Auckland, New Zealand
4 Broad Institute, Cambridge, MA, USA

Introduction

* The human gut microbiome contributes to the development and persistence

of diseases such as type-1 diabetes (T1D),

many others.

ulcerative colitis, obesity and

 Exact mechanisms of how gut microbiota influences health remains poorly

understood.

* Only 50% of microbial protein-coding genes may be functionally annotated.

* Low functional annotation coverage poses a major challenge in
understanding of how the microbiome contributes to certain disease

phenotypes.

 We aim to characterize the functional potential of the human gut

microbiome in type-1 diabetes.

Methods overview

 Diabimmune infant gut microbiome cohort data previously collected in
Finland, Estonia and Russian Karelia as case study

 Shotgun metagenome sequencing (1067 samples)

A custom metagenomics annotation pipeline based on DeepFRI machine
learning protein function annotation method

* Our method integrates de novo genome reconstruction, taxonomic profiling

and functional annotation

Taxonomy aware function annotation pipeline

Pipeline implemented in WDL
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Annotation method Gene ontology terms predicted

DeepFRI (CNN-MF model)
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13,896,275

Quality and completeness of metagenome assembled genomes
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Genome quality of MAG species

Completeness

Genome quality threshold of >90% genome completeness and <5%
contamination, the final genomes matching these criteria were 2,256

Assembly Count
Contigs 17 M

MAG genes 1.7 M
NR- gene catalogue 1.9 M

Assembly and gene prediction statistics

Abundant species in the Diabimmune datasets
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We observed an increase in annotation coverage with DeepFRI compared

to Humann2 and EggNOG

Conclusions

* Result shows that DeepFRI method increases the annotation coverage
* Next step is to expand the annotations to incorporate 3D structure

DeepFRI predictions
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Abstract

16S rRNA marker gene sequencing is a staple technique for microbiome analyses that provides rapid and cheap
bacterial identification. The most popular and well-standardized experimental technique is based on Illumina short-read
seguencing. Alternative techniques are long-read Oxford Nanopore (ONT) and short-read lonTorrent platform (PGM). While both
producers provide complete 16S analysis workflows, they are often not fully transparent, unadaptable, and limited to the basic
methodology implemented within a given workflow. This produces a community-wide need for more in-depth workflows which
at the same time will validate the applicability of the two sequencing methods in the area of 16S experiments.

We describe the powers and limitations of the two methods (PCM and ONT) by comparing them with our alternative
downstream analysis created in QIIME2. The workflow was tested on 16S data generated on the Oxford Nanopore’'s and Thermo
Fisher's sequencing machines and their 16S metagenomics Kits. 16S sequencing data from 126 fecal samples from mice
humanized with human stool were analysed. Different diversity metrics, taxonomy classification, and differential abundance
methods were performed. For 21 common samples, Mentel test and Procrustes were made to compare the correlation of beta
diversity between the two platforms.

We have managed to achieve powerful results using the approach we created, despite the limitation of information
imposed by manufacturers' policies. Mentel test and Procrustes suggest good correspondence of the results from the two
platforms. However, we would like to stress the further need for the entire community to cross-validate results and develop new
standardized approaches for the data produced from PGM and ONT 16s sequencing solutions.

Introduction
16S rRNA sequencing on lon Torrent and Oxford Nanopore

16S rRNA gene has been universally used for taxonomic studies of prokaryotic species.
Table 1 presents these approaches as proposed by the technology provider [1, 2].

lon Torrent Oxford
ThermoFisher NANOPTQ!EEES
SCIENTIFIC 9
: Long sequence read
Detectloq ot . The magnitude of the lengths; relatively
hydrogen ion Fast; cheap; high- : : : .
SEQENCING : . electric current density | high sequencing error
release during quality reads :
METHOD : : across a nanopore rate; high throughput;
incorporation of new -
: surface portability; fast; low
nucleotides .
price
Hypervariable regions
16S V2-4-8 and V3-6,7-9;
SEQUENCING lon 16S™ forward and reverse 16S Barcoding Kit full IengtehnleGS "RNA
KIT; REGION Metagenomics Kit reads; bidirectional; d
SEQUENCED proprietary primer
sequences
lon 165™ BLAST to either the
metadenomics premium curated BLAST basecalled
9 MicroSEQ® ID or EPI2ZME 16S analysis sequence against
SOFTWARE analyses module :
L curated Greengenes workflow the NCBI 16S bacterial
within the lon
™ or a two-step database,
Reporter™ software :
alignment
Table 1

Powers and challenges of the two methods

The scarcity of tools specifically designed to work with Nanopore, and lon Torrent
sequences make it challenging to carry out a specialized microbiome analysis.

lon Torrent [3, 4]

« studies available showed significant correlation of |
genera identified in lllumina and PGM
 hypervariable regions and unknown primer| -
sequences have a big effect on a lot of aspects of prone,

data, larger than a lot of biological effects: « outside of EPI2ZME analysis:

1) Mixed-orientation reads will inflate diversity estimates. 1) applying ONT to microbial diversity uses a similar approach to previous
2) Reads from the same bacterium but different variable regions may studies, mostly Illumina-based

Nanopore [5]

capturing the entire 16S rRNA gene improved
classification at the genus and family levels,
bacterial species identification is highly error-

be interpreted as different bacteria 2) Limited quality sequences should sometimes be a constraint to apply
3) Some OTUs may be underrepresented and some may be counted existing tools designed for other technologies.

multiple times. 3) The final output from EPI2ZME is usually not compatible with tools for
4) The data becomes impossible to use/reuse when looking for a analyses such as diversity and taxonomic differential abundance.

specific ASV.

Humanization experiment

16S rRNA marker gene sequenced on PGM platform (123 samples) and ONT platform (23 samples)
was done in experiment in which NUDE and NSGC mice were humanized with a single human stool
sample over the course of three months. 123 samples were sequenced using PCM and 23 using ONT
devices and chemistry.

NSG mice

w

"N
)

RNA extraction

CAAGCGTTATC-CGGAATTATTGGGCGTAAAGCGCGCGTACGCGGTT
CAAGCGTTATC-CGGAATTATTGG-CGTAA-GCGCGCGTAGGCGGTT
CAAGCGTTATC-CGGAATTATTGGGCGTARAGCGCGCGTAGGCGGTT
CAAGCGTTATC-CGGAATTATTGGGCGTARAGCGCGCGTAGGCGGTT
CAAGCGTTATC-CGGAATTATTGGGCGTARAGCGCGCGTAGGCGGTT
CAAGCGTTATC-CGGAATTATTGGGCGTARAGCGCGCGTAG-CGGTT
CAAGCGTTGTCCGGGAATTATTGCGCGTAA-GGGCTCGCACGCGGTT
CAAGCGTTGTC-GGGAATTATTGGGCGTARAGGGCTCGCACGCGGGT

Mice stool samples
collected at different
timepoints within

3 months

humanization

16 rRNA gene sequencing

Figure 1
QIIME2 downstream analysis worflow

We have created an alternative downstream analysis workflow in Qiime2 [6] tailored to PGM and ONT
prerequisites. Some of the adjustments and settings are presented in the Figure 2.

4 I
Both: Import as Artifact using manifest file (conforms to Sanger

(Phred+33using)

Y4

J
J
PGM: DADA2 (denoise-pyro, trim-left=15, trunc=0)

ONT: basic quality filtering; Feature table: VSEARCH (dereplicate)/

~

N

Both: VSEARCH (consensus) against Green Genes, 99%
PGM: align in both directions

PGM: SEPP (fragment insertion method)

Tree ONT: imported 99% Green Genes (rooted)

PGM: Faith PD (metrics incorporating phylogeny) Unifrac

Diversity ONT: same as for PGM (but quantitative metrics were fine too) )

Differential
abundance

Both: ANCOM
AVZAN Y

Figure 2

Results
Quality control

MALOPOLSKA
CENTRE OF
BIOTECHNOLOGY

The higher number of sequenced samples on the PGM platform (126 vs. 23 in ONT) translates directly into

the number of detected features in the two sample sets. However, the alpha-difference curves indicate that
increasing the depth above the values in the table does not cause new biodiversity to appear (alpha-diversity curves
are saturated with the values indicated in the table). At the same time, such sampling depths make it possible to
preserve all collected samples.

FEATURE TABLE SUMMARIES FOR ONT AND PGM

lon Torrent

Oxford Nanopore

23 (22 mice, 1 human, 2

# Samples 126 (123 mice, 1 human, 2 mock) mock)
Unique features 0,877 3,543
Total features 17,908,604 1,130,914
Features per sample (median) 129,097 41,628
Reads per feature (median) 83 11
Features per sample at even 45,000 9000

sampling depth

Features retained at even
sampling

5,850,000 (32.67%)

212,727 (18,8%)

Table 2

lon Torrent and Oxford Nanopore performance comparison

CORRELATION OF BETA DIVERSITY BETWEEN THE TWO PLATFORMS

Mantel Test for unweighted Unifrac

The Mantel test is a
1.0 A Method Spearman iSti i
Lo e MwEmes statistical test of the correlation
m < o . between two matrices. The
= 00" ® P Sk matrices must be of the same
= ) ) :
£ gl Permutatio 599 dimension, so the sample size
3 .. was subsampled to 21 for the
,‘E 0.7 - . e Alternative  two-sided samples. present 'n both
a hypothesis sequencing methods. Test
< 0.6 - showed good positive correlation
© Spearman 0.70408 (rho = 0.70408, p-value 0.001) of
0.5 - rho beta diversity measured by
unweighted UniFrac and
p-value 0.001 - .
0.4 ; . : . . : . moderate positive correlation (rho
0.3 0.4 0.5 0.6 0.7 0.8 0.9 : _ _
Pairwise Distance (ONT) Figure 3 = 0517567, p-value 0.003) for
weighted UniFrac.
Mantel Test for weighted Unifrac
1.4 - o Method Spearman
e " ®s o
1.2 - *°% U Sample size 21
— & L ] ® ® L e
E ® .‘e [ ]
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= - ® ®
E 0.8 - } om® ‘--:. eee . ®® Alternative two-sided
?1 ® s . o ® hypothesis
$os| 'fﬁ °e%c0cn © o
L= ® :#“‘- ®
a 1 O &, L4 o’ Spearman 0.517567
0.4 i ® ®
o rho
0.2 - ® p-value 0.003
0.2 0.4 0.6 0.8 Figure 4
Pairwi Dist MNT . . .
airwise Distance [ONT) Procrustes Visualization
Axis 2 (27.70 %) LAS rcrfasr?gfrlwf)sle_sg—rceﬁ; nge;
Procrustes analysis is a form of statistical shape Mouse samples - blue
analysis used to analyse the distribution of a set of shapes.
It can be used in microbial biloogy to compare two
matrices for example to determine whether we would
derive the same beta diversity conclusions. Procrustes
analysis takes as input two coordinate matrices with
corresponding points (generated by running principal
coordinate analysis on a distance generated from for
example weighted UniFrac) and transforming the second
coordinate set by rotating, scaling, and translating it to
minimize the distances between corresponding points in R
the two shapes.
Axis 3 (1188 %) Flgure 5

Conclusions

1. There is a shortage of sophisticated bioinformatic tools for ONT and PGM at the
current level of methodological advancement.

3. Qiime2, can be adapted to facilitate the methodological implications specific to
PGM and ONT with a robust alternative to alignment, taxonomic analysis and
phylogenetic analysis, such as diversity indicators, has been developed.

4. Analyzing sequencing data using a unified QIIME 2 framework, we show that lon

In the case of the lon Torrent, efforts have focused on strategies to combine
results from multiple variable regions and mixed orientations while for Nanopore
it is designing tools for base-calling, demultiplexing and taxonomic assignment.

Torrent and Nanopore results are comparable with each other
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» fewer extreme variants are consistent with purging due to the homozygous state in males
» accumulation of nonsynonymous mutations on the BTY could be associated with loss of recombination

» variants in transcription regions on BTX have less severe consequences as compared to BTY and autosomes

MATERIAL

217 individuals of 7 Danish cattle breeds
WGS — lllumina HiSeq 2000

assembly: ARS-UCD1.2 Btau5.0.1Y
Btau 5.0.1 and ARS-UCD1.2 GFFs

METHODS
L

QUALITY CONTROL En

VARIANT ANNOTATION B u=
PROCESSING

RESULTS
»23,655,295 SNPs / 3,758,781 InDels

»numbers of SNPs and InDels not uniformly distributed
across 100kb non-overlapping windows (P < 0.001)

rKa/Ks ratio: BTA=0.79BTX =0.62BTY =2.00

Statistical analysis:

» variant density on each chromosome

* InDel length « Ka/Ks ratio * nucleotide divergence
* Tajima’s D « SIFT score

autosomes X N

14% -
Fig. 2: Nucleotide divergence for
autosomes, the BTX chromosome,
and the BTY chromosome.

Fig. 1. The annotation of variants in coding
(CDS) and non-coding (non-CDS) regions.
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Fig. 2: Tajima’s D for autosomes, the BTX
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Introduction

Constant growth of genomic data leads to
arising of a new research field called pan-
genomics. It is focused on delivering methods
for joint multiple sequences processing. In this
work a tool called Panglree is introduced.

The purpose of this tool is to extend currently
used methods — multiple sequence align-
ment, consensus search, multialignment
graph representation into new concept called
Affinity tree. It is designed to be used as a tax-
onomic study or a reference genome for aligned
sequences.

Multialignment as a

Graph representation of multiple alignment
is based on partial order alignment graph.|[1| The
transtformation is executed as follows:

Process multialignment column by col-
umn;

Merge identical nucleotides into single
nodes;

Add directed edges between subsequent
nodes and undirected for aligned nodes.

: GEEEC ¢ T ¢ CEEECEGECNCHENNNNNCEC [N-

The representation is concise and intuitive. It
is suitable to represent both short-length muta-
tions and longer rearrangements, e.g. inversions
or duplications.

Consensus 1dea

Typically, a consensus is determined by voting
procedure on multialignment columns:

CATCGATGA
GATG-TTGA
CATG-TTG-

!
CATG-TTGA

However, for multialignment given as a graph,
Lee|1| proposed to find consensuses as minimum
set of paths which describe all sequences.

Using Lee’s approach we can build a graph
model of multialignment and find a flat divi-
sion of its component sequences into subgroups.
Each of them has a consensus sequence as-
signed.
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Affinity tree

The introduced data structure is called Affinity tree. It serves as an extension of Lee’s methods into
hierarchical division of aligned sequences joint with consensus paths generation.

The root node has all input sequences assigned. Each non-leat node has at least two children nodes
that form a partition of the sequences assigned to their parent into more homogeneous subsets.

/E:’FE E|3|-f-1r
.-_I\
Ly
[ 3rseq 5

'_E:}squ

Each node has the following attributes assigned:

e a subset of input sequences,

e a linear consensus sequence being their com-
mon representation,

\ e a minComp (minimum compatibility) -
Byseqo value which reflects this node’s homogene-
ity level.

Figure 1: An example of a Affinity tree

Affinity tree can be used as a reference genomes source, an evolution model or an assessment of
heterogeneity for given dataset.

Simulated dataset

In order to evaluate the proposed solution a simulated multialignment was prepared using Evolver
and evolverSimControl software. This alignment was based on a phylogenetic tree presented in
Figure 2. It can be easily compared with the obtained Affinity tree which is shown in Figure 3.

Tree scale: 0.01 —

1

]
« "I O@TMMmMUO >

4[[

Figure 2: Phylogenetic tree for simulated data

The trees have similar forms which means, that the
evolution pattern was correctly discovered by pangtree.
However, the result includes not only the tree but also
a consensus sequence assigned to each node. This is the
main advantage of the Affinity tree over a phylogenetic Figure 3: Affinity tree for simulated

tree. data
For further simulations please follow the article|2|.

Ebola virus dataset

The proposed approach was also applied to Ebola virus alignment. The multialignment file was built
using 160 genomes and is available in UCSC Ebola Portal together with associated studies.

The relationships between aligned se- ™=
quences were correctly discovered.

Species/Outbreaks
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I DRC 2007

- B sudan 1976-9
Zaire Ebola virus
|| Bundibugyo 2007
| | Ebola 2014

. Marburg 1987

T
00000
Sudan Ebola virus

T
00000

00000
Bundibugyo 2007 Ebola virus

00000

3333333333

3333333333
ssssssssssss

sssssssssssssssss

,,,,,,,,,,,
uuuuuuuuuuuuuuuuuuuuuu

Figure 4: Local compatibilities between
consensus sequences of ebolavirus species e

Plots on Figure 4 show compatibili- I
ties with the consensus sequence of the
species from the caption. Dark back-

ground indicates coding sequences, re-

spective genes are listed below.

Figure 5: Ebola — Affinity tree
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Obijective Methods

Results

The aim was to develop a novel tool for the
automated detection of cerebral microbleeds

fDepartment of Epidemiology & Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, People’s Republic of China
(CMBs) based on magnetic resonance (MR)
images. The system is expected to increase the

a) b) c) d)
Brain extraction and
standardization
sensitivity of CMB detection and to improve the 0 0 o !
accuracy of the diagnosis of the disease. |
Figure 1: Example of brain image slice
with CMB marked by an expert.

Introduction Potential CMBs

Cerebral microbleeds are caused by structural abnormalities of the brain’s detection
small vessels. CMBs are linked with many neurological diseases; they can
even lead to cognitive impairment, disability or death. They are visible on

Susceptibility Weighted Imaging (SWI) sequences as round or elliptical areas ‘

with lower signal intensity and diameter up to 10 mm. Their manual

Dataset 1: The network reached a weighted
accuracy of 94.48% with a sensitivity of
90.00% and specificity of 98.95%. The number
of objects incorrectly classified as CMBs was
32 which gives an average of 0.54 false
positives (FP) per patient.
Dataset 2: The system was able to detect 108
from 118 CMBs which resulted in the
Segmentation Figure 6: Exemplary positive samples. Red - CMBs identified correctly; sensitivity Of 91'5%' The number Of false
of CMB candidates yellow - CMBs lost by the system; blue - exemplary false positives. positives was 117 which gives 1.92 FPs per
patient and the specificity of 95.2%.

Pre-processing

'\

O

Patients Patients No. of Patients Patients No. of
detection is prone to errors and time-consuming. Filtration criteria Modality without  with CMBS without  with CMBS Sensitivity ~ Specificity =~ FPs/patient
(Shape’ centroid, CMBs CMBs CMBs CMBs
Filtration mirrored objects) and Barnes et al. (2011) SWI . 6 120 . 6 6 81.70% 95.90% 107.50
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scheme is presented in Fig.2. Figure 2: The process scheme. | internal external
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Table 1: Comparison with existing solutions (not all details were always available). Our results are marked red.
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Figure 3: The pipeline of the CMB detection algorithm.
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additional imaging or complex models. On both test data, the developed system

: Conv Max- i Numerical c g . oy 0
e Laver | Poolingl R [ data |- outperforms existing methods in terms of the number of false positives (FP) per

(1x25)
Figure 4: The architecture of the

Sroposed Hybrid Neural Network patient. Our research confirms the usefulness of deep learning solutions to the

Figure 5: Brain folding
mask in 3D and 2D.

problem of CMB detection based only on single MRI modality.
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Multiscale Modeling of Protein Structure and Dynamics
Using Coarse-Grained Models of Various Resolution
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COARSE-GRAINED PROTEIN MODELS

SURPASS

43 pseudoatoms

PES high
resolution

PES medium
resolution

resolution

The coarse-grained models, their representation of protein chains, force fields, and sampling technigues must be
carefully designed. In all coarse-grained models, the main purpose was to reduce the number of degrees of
freedom. For this reason, pseudo atoms replace amino acid fragments or even entire amino acids. A broad spectrum
of coarse-grained protein chain representations was proposed, starting with the simple lattice protein-like HP
models or structurally more realistic low-resolution models like SICHO, by intermediate resolution coarse-grained
models (e.g., CABS, UNRES) to almost exact coarse-grained protein models, like Rosetta or PRIMO. Medium-
resolution CG models significantly expand the time scale and system size of molecular modeling. However, they
struggle with de novo modeling of larger structures. Therefore, an efficient tool is needed to expand the range of de
novo modeling of protein structure and dynamics by fast and efficient simulations of low-resolution structures.
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Classical atom-level molecular modeling can address many of the key tasks of structural biology, but its practical
applications are still limited. This 1s a major reason why the development of coarse-grained protein modeling
methods is needed. Coarse-grained models are computationally more effective and enable simulations of much
longer time-scales and/or larger sizes of the systems studied. Multiscale methods that allow the transfer of
Information between various levels of granularity are more efficient and enable an analysis of larger systems on a
longer time scale. Although successful multiscale modeling needs efficient and reliable algorithms for transferring
Information between calculations with different resolutions

CG MODELING OF PROTEIN DYNAMICS

Given the reports on the essential importance of protein dynamics for its biological function, we have studied the
local flexibility of protein near the folded state. In the comprehensive study of 140 globular protein dynamics, we have
applied various coarse-grained approaches: ENM-based modeling technique (DynOmics) and two representative
simulation tools: medium-resolution CABS model and low-resolution SURPASS model. The proposed protocol
succeeded in capturing the experimentally determined features (from NMR ensembles]) of the investigated systems.
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Due to its computational efficiency, SURPASS can be used for modeling long-time dynamics and large-scale
structural transitions in protein systems that are significantly bigger than those tractable by the coarse-grained
modeling tools of higher resolution. The models such as SURPASS can be useful as part of multiscale molecular
modeling schemes. In such a scheme, SURPASS simulations can provide a collection of protein-like low-resolution
starting structures, and these could be used for more accurate methods, e.g., as an input to replica-exchange
simulations with a medium-resolution CG model (for example, CABS]. Intermediate resolution structures can be
finally subjected to all-atom reconstruction and MD refinement/scoring simulations.
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SURPASS is a low-resolution, deeply coarse-grained model of protein structure. The number of pseudo residues
representing protein structure corresponds to the length of the protein sequence. The main idea behind the model is
based on a unique generalization of the local geometry of a polypeptide chain. Namely, positions of pseudo atoms
are defined by averaging the coordinates of the four consecutive a-carbons along the chain. These four-residue
fragments are replaced by a single center of interactions. The choice of four-residue averaging is crucial for the
geometry of the model. In contrast to other short fragments of different lengths, only the four-residue averaging
leads to an almost linear shape of the SURPASS fragments representing helices or B-strands. This feature of the
model results in simple and effective sampling schemes. The SURPASS representation assumes three types of
pseudo atoms depending on secondary structure assignment: H (helical), S (B-strand], C (coil-like).

SURPASS FORCE FIELD

Designing and derivation the force field for a coarse-grained model is always a key point for its performance. A
combination of the statistical potentials defines the knowledge-based SURPASS force field. They describe local
structural regularities characteristic for most globular proteins. The generic terms are basically sequence-
Independent and are encoded non-directly via secondary structure assignment. The solvent is treated implicitly, and
its effects (water with other small molecules or a membrane environment for transmembrane proteins) are
Included directly in the statistical potentials that describe interactions between the united residues.

The specific interaction model distinguishes the protein-like SURPASS chain from a random polymer.
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Distances and angles be-
tween atoms close along
the sequence in polypeptide
chains are highly restricted
due to various short-range
interactions, which provide
the correct local geometry
of the structure.

To prevent the excessive and
non-physical collapse of a
structure, generic local re-
pulsions are needed. Using
deeply buried elements de-
rived from PDB, we esti-
mated the number of neigh-
boring SURPASS atoms.

To avoid steric clashes be-
tween pseudo atoms distant
in sequence but close in
space, the excluded volume
cut-off was derived. Contacts
arerewarded only for specific
distances between atoms
of agivenll-structure type.

H-bonds between residues
close to each other along
the chain are treated im-
plicitly. H-bonds between
residues that are distant in
the sequence [in the
extended fragments] are
modeled moredirectly.

To force the SURPASS chain
to fold into globular topo-
logy, we used a simple cen-
trosymmetric potential. Its
purpose is to maintain a
sufficiently high degree of
packing of pseudo residues
In the protein core.

S. Kmiecik, et.al., Chem. Rev. 2016, 116, 14, 7898-7936
A.E. Dawid, et.al., J. Chem. Theory Comput., 2017, 13(11), 5766-5779
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S. Kmiecik, et.al., Int. J. Mol. Sci. 2018, 19(11), 3496
A.E. Badaczewska-Dawid, et.al., Methods Mol. Biol., 2020, vol 2165

SURPASS MODELING OF PROTEIN STRUCTURE

SURPASS model was used for replica-exchange Monte Carlo dynamics simulation of proteins, with secondary structure
as the only sequence-dependent input data for the interaction model. The studied cases were a representative set of
single-domain globular proteins. The set contained 7 helical proteins, 9 mostly B-sheet, and 8 mixed alpha/beta
proteins. In the test simulations presented here, the secondary structure assignments required by the model were
taken directly from the PDB database. Replica exchange Monte Carlo simulations were performed with 12 replicas for
each tested protein. The starting structures of all replicas had fully expanded the conformation of model chains.
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The method efficiently samples the entire conformational space of polypeptide chains. Despite its deep simplification,
the SURPASS model reproduces reasonably well the basic structural properties of proteins. Also, the accuracy of the
resulting native-like models, measured by the RMSD between the generated chains and the SURPASS representation
of experimental structures, is surprisingly good for such a level of coarse-graining. We demonstrated that different
assignments and/or predictions of secondary structures are sufficient for enforcing cooperative formation of native-like
folds of SURPASS chains for the majority of single-domain globular proteins. Simulations of globular protein structure
assembly have shown that the accuracy of secondary structure data is usually not crucial for model performance.
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Algorithms and models for protein
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The last decade has seen a large increase in the number of studies related to protein topology. Currently, there are over 1500 known knotted or slipknotted protein
chains and almost 10 000 protein links. Screening of available RNA structures has also found entanglements. Recent advances in the study of chromatin structure gave
rise to new 3D models—many of which contain entanglements, including composite knots. Still, the subject of molecular entanglements remains relatively unknown to a
ot of researchers, including those studying protein structures. One obvious reason is the steep learning curve for actually seeing the knots in a 3D structure visualization.
Knot_pull (Jarmolinska et al, 2019) allows an easy analysis of topological intricacies by providing the user with a trajectory of smoothing steps—from the full structure, to
the minimal number of coordinates preserving the original topology (with regard to fixed position of chain termini) — and the knot type (including separation of
composite knots, and indication of any linking present) - without using the prevalent probabilistic approach.

Studying the sequences of entangled proteins also encounters problems - finding the most closely related protein family may require detecting the similarity based on
sequence profiles, which are not easily (multiple-)aligned. To overcome this obstacle, | introduce two new heuristic for creating a multiple profile alignment, by using a
modified Dijkstra’s shortest path tree algorithm to find the maximum weight trace (Kececioglu, 1993) of a set of pairwise alignments. This allows for an easy, large scale

comparison of loosely related protein groups.
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Structures are simplified by reducing the number of
points - which doesn't necessarily extrude the ends.

KnotPull allows all connections to
be split or shortened thus
tightening the entanglement - and
making the ends stand out more -
so that there exists a projection
which could be closed without
KMT adding to the entanglement.
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AIM OF THE STUDY

The goal of this work was to investigate diverse approaches for high-throughput molecular biology integrative data analysis to enable the discovery of disease of affluence biomarkers. The research methodology comprises a thorough overview of existing
approaches for data combination, merging, comparison, and joint analysis, as well as the development of new methods for handling multi-omics studies. The expected outcomes of this work include the establishment of novel tools and procedures tailored to the

tasks of multi-platform and multi-omics data and result integration.

INTRA-EXPERIMENT INTEGRATION

An original batch effect identification algorithm based on dynamic programming was proposed,
as correcting for these effects constitutes a part of the intra-experiment data integration
pipeline. The Batchl algorithm is based on partitioning a series of high-throughput experiment
samples into sub-series corresponding to estimated batches. The dynamic programming
method is used for splitting data with maximal dispersion between batches, while maintaining
minimal within batch dispersion. The procedure has been tested on a number of available
datasets with and without prior information about batch partitioning. Datasets with a priori
identified batches have been split accordingly. Batch effect correction is justified by higher
iIntra-group correlation. In the blank datasets, identified batch divisions lead to improvement of
parameters and quality of biological information, shown by literature study and Information
Content.

INTER-PLATFORM INTEGRATION

The analyzed data consist of two gene expression sets obtained in studies of radiosensitive and
radioresistant breast cancer patients undergoing radiotherapy. The data sets were similar in
principle; however, the treatment dose differed. It is shown that introducing mathematical
adjustments in data preprocessing, differentiation and trend testing, and classification, coupled
with current biological knowledge, allows efficient data analysis and obtaining accurate results.
The tools used to customize the analysis workflow were batch effect filtration with empirical
Bayes models, identifying gene trends through the Jonckheere-Terpstra test and linear
interpolation adjustment according to specific gene profiles for multiple random validation.
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The Batchl algorithm's performance on identifying batch structure is proven to be highly
efficient, and moreover, batch effect preprocessing entails potential new knowledge discovery
in studied diseases and conditions. It is available to the scientific community as an R package.
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The application of non-standard techniques enabled successful sample classification at the rate
of 93.5% and the identification of potential biomarkers of radiation response in breast cancer,
which were confirmed with an independent Monte Carlo feature selection approach and by
literature references. This study shows that using customized analysis workflows is a necessary
step towards novel discoveries in complex fields such as personalized individual therapy.

INTER-OMICS INTEGRATION

The goal of this part was to elucidate molecular mechanisms of radiation-induced |HD by
Integrating proteomics data with a transcriptomics study on post mortem cardiac left ventricle
samples from Mayak workers categorized in four radiation dose groups (0 Gy, < 100 mGy,
100-500 mGy, > 500 mGy). The proteomics data originated from a label-free analysis of cardiac
samples. The transcriptomics analysis was performed on a subset of these samples. Stepwise
linear regression analyses were used to correct the age-dependent changes in protein
expression, enabling the separation of proteins, the expression of which was dependent only on
the radiation dose, age or both of these factors. Importantly, the majority of the proteins
showed only dose-dependent expression changes. Hierarchical clustering of the proteome and
transcriptome profiles confirmed the separation of control and high-dose samples. Restrictive
(separate p-values) and integrative (combined p-value) approaches were used to investigate the
enrichment of biological pathways.
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Custom statistical integrative methods applied to a transcriptomics and proteomics data set on
ischemic heart disease plutonium mine workers enabled discrimination of dose dependent
protein expression changes from the age dependent changes and validation of pathways
identified previously in the proteomic data.
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